

 NPCI Mandate Approval Gateway Service

Bank Specification Document

Version 4.2.3

2 | Page

DOCUMENT RELEASE NOTICE

Document Details

Name Version No. Date Description

Bank Specification Document Draft 24-02-2017 Provides technical & operation

specification for Banks to develop

compatible application at their end

for communicating with the

Mandate Authorization application

NPCI Mandate Authorization

Specification for Banks

1.0 01-03-2017 Updated for Debit Card

NPCI Mandate Authorization

Specification for Banks

1.1 22-03-2017 Covered the specification for

Signing, Check Sum & Encryption.

XML Specification, XSD & XML

Samples attached as zip

NPCI Mandate Authorization

Specification for Banks

2.0 27-03-2017 Updated for Error Scenarios, HTTP

Status codes.

NPCI Mandate Authorization

Specification for Banks

3.0 26-05-2017 API to get live destination banks for

e-mandate

Separate URL’s for Net banking &

Debit Card

Corporate mapping to the

destination banks

NPCI Mandate Authorization

Specification for Banks

3.1 08-06-2017 Updated the process flow to

include bank selection in the

merchant page.

3 | Page

NPCI Mandate Authorization

Specification for Banks

3.2 24-06-2017 Addition of Dbtr tag in Request

XML.

Changes in Error Response XML’s,

Error Codes & Failure Scenarios (In

Appendix)

NPCI Mandate Authorization

Specification for Banks

3.3 03-Jul-2017 Error Codes & Failure Scenarios

Sheet Updated.

Encryption of Debtor field instead

of Creditor. Changes in Server to

Server communication

specification.

NPCI Mandate Authorization

Specification for Banks

3.4 14-Jul-2017 Changes in Request & Response

XML formats and Error XML

format.

NPCI Mandate Authorization

Specification for Banks

3.5 07-Aug-2017 Handling of Timeout Scenario

Added

NPCI Mandate Authorization

Specification for Banks

3.5 20-Dec-2017 Encryption methodology updated

Updates to Offline API’s

Error Codes Updated

NPCI Mandate Authorization

Specification for Banks

3.6 18-Sep-2018 AuthMode added as additional

Parameter from Merchant. Flow

changes based on this parameter.

NPCI Mandate Authorization

Specification for Banks

3.7 15-APR-2019 Change in API “Posting list of Open

Transactions to Bank”

4 | Page

NPCI Mandate Authorization

Specification for Banks

3.8 17-May-2019 Changes in Error XML Structure

from Bank to NPCI and from NPCI

to Merchant (Appendix 9.1)

Changes in lengths and data types

of XML elements in Merchant

Request. Changes in Error

Response from Bank

Change in live bank list api

NPCI Mandate Authorization

Specification for Banks

4.0 12-DEC-2019 Changes in Merchant request XML,

Bank request XML & Merchant

response XML.

Encryption of additional fields

Encryption of Request XML and

Response XML

Additional parameter in the form

post for Merchant

NPCI Mandate Authorization

Specification for Banks

4.1 29-JUL-2020 Introduction of New Debit Card

Flow

BANKID & AUTHMODE mandatory

in merchant request

NPCI Mandate Authorization

Specification for Banks

4.2 29-DEC-2021 Introduction of Aadhaar flow

NPCI Mandate Authorization

Specification for Banks

4.2.1 29-MAR-2022 Added Signature and Checksum in

bank response

NPCI Mandate Authorization

Specification for Banks

4.2.2 25-MAY-2022 Signature, checksum logic added

Aadhaar Mandate Validation,

Aadhaar OTP validation Checksum

fields added.

5 | Page

Request Parameter

aadhaarNumber updated as

aadhaarNo

Aadhaar response corrected

NPCI Mandate Authorization

Specification for Banks

4.2.3 03-Jun-2022 aadhaarAuthDtls attiribute

corrected in ResendOTP Aadhaar

Request

Resend OTP Request format

added for Direct Debit card flow

NPCI Mandate Authorization

Specification for Banks

4.2.4 23-Aug-2022 Debit Card failure reattempt

screenshot added for Direct Debit

card flow

NPCI Mandate Authorization

Specification for Banks

4.3 25-10-2022 Introduction to Amend, Cancel,

Suspend and Revoke,Custom

cancel

NPCI Mandate Authorization

Specification for Banks

4.4 30-05-2023 Introduction of PAN and Cust ID

authentication mode

This document and any revised pages are subject to document control. Please keep them up-to-date using

the release notices from the distributor of the document.

6 | Page

Table of Contents

1. INTRODUCTION 9

1.1 ABBREVIATION 9

2. INTERFACE SPECIFICATION DETAILS FOR MANDATE APPROVAL 10

2.1 REGISTRATION WITH NPCI 10

2.2 MANDATE APPROVAL FUNCTION FLOW (FOR NET BANKING & DEBIT CARD

AUTHENTICATION MODES) 10

2.2.1 END TO END PROCESS FLOW (FOR NET BANKING & DEBIT CARD

AUTHENTICATION MODES) 11

2.3 MANDATE APPROVAL FUNCTION FLOW(AMEND, CANCEL, SUSPEND, REVOKE)

 12

2.4 INTERFACE LAYER 13

3. SPECIFICATION FORMAT FOR REQUEST & RESPONSE 14

4. TECHNICAL INTEGRATION SPECIFICATION 15

4.1 FORWARD FLOW SPECIFICATION FROM NPCI TO BANK 15

4.1.1 ENCODING OF REQUEST XML FOR BANKS 19

4.2 BANK SITE INTEGRATION REQUIREMENTS 20

4.2.1 NET BANKING FLOW 20

4.2.2 NEW DEBIT CARD FLOW 26

4.2.2.1 REQUEST INFORMATION TO BANK 27

4.2.3 AADHAAR BASED AUTHENTICATION FLOW 33

4.2.4 PAN/CUST ID AUTHENTICATION MODE 47

4.3 SIGNING AND ENCRYPTION PROCESS 59

4.4 ENCODING GUIDELINES 60

5. RESPONSE THROUGH OFFLINE SERVER TO SERVER COMMUNICATION 60

5.1 HANDLING OF TIME OUT / NOT REACHABLE SCENARIOS 60

5.1.1 JSON RESPONSE FORMATS 62

5.1.1.1 BANK TO NPCI (SUCCESS & BUSINESS REJECTIONS) 63

5.1.1.2 BANK TO NPCI ERROR RESPONSE (TECHNICAL REJECTIONS) 63

6. API SERVICES 63

6.1 API TO GET TRANSACTION STATUS FOR BANKS 63

7 | Page

6.2 API FOR POSTING LIST OF OPEN TRANSACTIONS TO BANK 66

🡺 Request: 66

Given below are the JSON Response formats. 66

🡪 Success Response 66

🡪 Error Response 67

6.3 HEART BEAT API 67

6.3.1 Request: 67

6..3.2 Response: 68

 7. APPENDIX 68

7.1 REQUEST & RESPONSE XML SPECIFICATION FOR BANKS 68

7.2 SAMPLE XML FORMATS AND SCHEMAS 68

7.3 ERROR CODES 68

7.4 BANK REJECT REASON CODES 69

7.5 GUIDELINES AND DESIGN FOR NETBANKING PAGE, DEBIT CARD AND

CORPORATE PAGE 69

7.6 LOGIC FOR GENERATING JSON WEB SIGNATURE (JWS) 69

7.7 CHECKSUM LOGIN FOR BANK RESPONSE TO NPCI 69

7.7.1 CheckSum Logic for Mandate Validation 69

Generating Checksum with concatenating below fields 69

Before check sum Hashing example 69

After checksum hashing SHA 256 71

Encrypting the checksum with NPCI public key 71

Final Response with signature and checksum: 71

7.7.2 CheckSum Logic for OTP Validation 72

Generating Checksum with concatenating below fields 72

Before check sum Hashing example 72

After checksum hashing SHA 256 73

8 | Page

Encrypting the checksum with NPCI public key 73

Final Response with signature and checksum: 73

9 | Page

1. Introduction

This document details the requirement for destination banks to develop the required interface
for interacting with the Mandate Authorization gateway service.

The file formats for request & response are covered in this document.

1.1 Abbreviation

The below abbreviations are used in the document.

NPCI National Payments Corporation of India

ONMAGS Online Mandate Approval Gateway Service

UIDAI Unique Identification Authority of India

10 | Page

2. Interface specification details for Mandate Approval

2.1 Registration with NPCI

The destination banks who want to leverage the service need to be registered with NPCI and get

certified.

2.2 Mandate Approval function flow (for Net Banking & Debit Card

authentication modes)

The mandate approval flow is initiated from the Merchant end, request validated at NPCI end and

forwarded to the Bank for authorization. The confirmation provided back by the Destination Bank is

relayed back to the merchant.

Mandates created through ONMAGS will be auto registered in MMS. The overall flow and the integration

between ONMAGS and MMS systems is explained by the below diagram.

The process flow is mentioned in the next section.

Note:

From version 4.1 BankID & AuthMode are mandatory in the merchant request

11 | Page

2.2.1 End to End Process Flow (for Net Banking & Debit Card

Authentication Modes)

The below diagram illustrates the functional flow of mandate authorization when Bank ID &

Authentication Mode are passed from Merchant. This will be the default flow from version 4.1.

Note:-

In case of new debit card/Aadhaar flow there will not be any redirection to Bank. The debit card/Aadhaar

authentication will happen in NPCI side itself. For this ONMAGS will interact with Banks through API calls

for validating the mandate and debit card/Aadhaar information. (Detailed flow explained in section 4.2.3)

⮚ Customer logins to the merchant site where he/she would be shown the mandate Information

⮚ Specific details of the mandate along with deduction details needs to be shown.

⮚ Customer can proceed with accepting the mandate if he/she finds the information displayed

is correct (Customer needs to enter the Bank account number before proceeding)

⮚ Merchant site needs to provide the option for selecting Bank & Authentication Mode

(NetBanking, Debit Card, Aadhaar Card, PAN, Cust ID).

⮚ Customer would be redirected to NPCI ONMAGS interface.

⮚ NPCI Interface would show an intermittent page while processing happens in the back ground.

12 | Page

⮚ If the validation is successful, then NPCI will auto redirect to Bank’s authentication page based

on the Bank ID & Authentication Mode selected by the end user in the merchant site.

⮚ If the validation fails, then NPCI will redirect back to the Merchant Site posting the Error XML

response.

⮚ Bank will display the authentication Page based on the Auth mode selected by the user.

⮚ In the Banks page customer will authenticate either using the user’s net banking

credential or Debit card credentials based on the authentication mode user had selected in

the Merchant page.

⮚ Bank need to validate whether the Account Number passed in the request XML matches the

Account Number through which the customer has authenticated the login.

⮚ Once verified Bank Page will display the summary of the mandate and provide option for

accepting or rejecting the mandate

⮚ Once the customer has selected either of Approve / Reject link he would be redirected back

to NPCI ONMAGS interface

⮚ The NPCI ONMAGS interface will auto redirect to the merchant site

⮚ Merchant site will display the status of Mandate Approval

2.3 Mandate Approval function flow(AMEND, CANCEL, SUSPEND, REVOKE)

13 | Page

The mandate approval flow is initiated from the Merchant end, request validated at NPCI end and sent

to MMS for validation, if validation is successful the request is forwarded to the Bank for authorization.

The confirmation provided back by the Destination Bank is relayed back to the merchant, if the

confirmation from bank is success, then persistence request is initiated to MMS.

Mandates Amend/Cancel/Suspend/Revoke through ONMAGS will be auto registered in MMS. The overall

flow and the integration between ONMAGS and MMS systems is explained by the above diagram.

2.4 Interface Layer

Necessary ports need to be opened between NPCI servers & Bank servers. Also required certificates needs

to be installed at NPCI & Bank Site servers.

For API flow (Direct Debit card/Aadhaar/PAN/Cust ID) authentication below details are required.

1. NPCI to Bank connectivity with specified port

2. Bank SSL certificate (FQDNS is preferred)

3. URL’s (mandate validation, verify OTP and resend OTP)

14 | Page

3. Specification Format for Request & Response

Appendix 7.1

Lists the XML file format for the request & response.

The specification for below request / response are listed in the document.

The data format would be XML. Schema structure and sample XML’s can he found in Appendix 7.2.

❖ NPCI Mandate Request to Bank

NPCI ONMAGS will send the request to bank in the specified format

❖ Response from Bank to NPCI

Destination Bank will use this format for sending response bank to NPCI ONMAGS.

15 | Page

4. Technical Integration Specification

The below section lists a few of the technical requirements for the implementation.

4.1 Forward Flow specification from NPCI to Bank

This flow applies to Net Banking mode of authentication or for the Old Debit Card flow authentication.

Below are the steps done for securing the content of the Request data posted to the Bank from NPCI

1. The request XML to bank with all the tags present will be in the below format: -

<?xml version="1.0" encoding="UTF-8"?>

<Document xmlns="http://npci.org/ONMAGS/schema">

 <MndtAuthReq>

 <GrpHdr>

 <NPCI_RefMsgId></NPCI_RefMsgId>

 <CreDtTm></CreDtTm>

 <ReqInitPty>

 <Info>

 <Id></Id>

 <CatCode></CatCode>

 <UtilCode></UtilCode>

 <CatDesc></CatDesc>

 <Name></Name>

 <Spn_Bnk_Nm></Spn_Bnk_Nm>

 </Info>

 </ReqInitPty>

 </GrpHdr>

 <Mndt>

 <MndtReqId></MndtReqId>

 <MndtId>UMRN</MndtId>

 <Mndt_Type></Mndt_Type>

 <Schm_Nm><Schm_Nm>

 <Ocrncs>

 <SeqTp></SeqTp>

 <Frqcy></Frqcy>

 <FrstColltnDt></FrstColltnDt>

 <FnlColltnDt></FnlColltnDt>

 </Ocrncs>

 <ColltnAmt Ccy="INR"></ColltnAmt>

 <MaxAmt Ccy="INR"></MaxAmt>

 <Dbtr>

 <Nm></Nm>

 <AccNo></AccNo>

 <Acct_Type></Acct_Type>

 <Cons_Ref_No></Cons_Ref_No>

 <Phone></Phone>

 <Mobile></Mobile>

 <Email></Email>

16 | Page

 <Pan></Pan>

 </Dbtr>

 <CrAccDtl>

 <Nm></Nm>

 <AccNo></AccNo>

 <MmbId></MmbId>

 </CrAccDtl>

 </Mndt>

 </MndtAuthReq>

</Document>
2. The request XML to bank with all the tags present will be in the below format for AMEND:

<?xml version="1.0" encoding="UTF-8"?>
<Document xmlns="http://npci.org/ONMAGS/schema">
 <MndtAuthReq>
 <GrpHdr>
 <MsgId></MsgId>
 <CreDtTm></CreDtTm>
 <ReqInitPty>
 <Info>
 <Id></Id>
 <CatCode></CatCode>
 <UtilCode></UtilCode>
 <CatDesc></CatDesc>
 <Name></Name>
 <Spn_Bnk_Nm></Spn_Bnk_Nm>
 </Info>
 </ReqInitPty>
 </GrpHdr>
 <Mndt>
 <MndtReqId></MndtReqId>

<MndtId>YESB0000000000000023<MndtId>
<Reason>AM05<Reason>

 <Schm_Nm><Schm_Nm>
 <Ocrncs>
 <SeqTp></SeqTp>
 <Frqcy></Frqcy>
 <FrstColltnDt></FrstColltnDt>
 <FnlColltnDt></FnlColltnDt>
 </Ocrncs>
 <ColltnAmt Ccy="INR"></ColltnAmt>
 <MaxAmt Ccy="INR"></MaxAmt>
 <Dbtr>
 <Nm></Nm>
 <AccNo></AccNo>
 <Acct_Type></Acct_Type>
 <Cons_Ref_No></Cons_Ref_No>
 <Phone></Phone>
 <Mobile></Mobile>

17 | Page

 <Email></Email>
 <Pan></Pan>
 </Dbtr>
 <CrAccDtl>
 <Nm></Nm>
 <AccNo></AccNo>
 <MmbId></MmbId>
 </CrAccDtl>
 </Mndt>
 </MndtAuthReq>
</Document>
3. The request XML to bank for CANCEL, SUSPEND , REVOKE and Custom Cancel with all the tags

present will be in the below format: -

<?xml version="1.0" encoding="UTF-8"?>

<Document

 xmlns="http://npci.org/ONMAGS/schema">

 <MndtAuthReq>

 <GrpHdr>

 <NPCI_RefMsgId></NPCI_RefMsgId>

 <CreDtTm></CreDtTm>

 <ReqInitPty>

 <Info>

 <Id></Id>

 <CatCode></CatCode>

 <UtilCode></UtilCode>

 <CatDesc></CatDesc>

 <Name></Name>

<UtilCode></UtilCode>

 <Spn_Bnk_Nm></Spn_Bnk_Nm>

 </Info>

 </ReqInitPty>

 </GrpHdr>

 <Mndt>

<MndtReqId></MndtReqId>

<MndtId>YESB0000000000000023<MndtId>

<Reason>CN01<Reason>

<Dbtr>

 <AccNo></AccNo>

 </Dbtr>

 <CrAccDtl>

 <Nm></Nm>

 <AccNo></AccNo>

 <MmbId></MmbId>

 </CrAccDtl>

 </Mndt>

 </MndtAuthReq>

</Document>

18 | Page

4. Generating checksum for the secure information in the XML

The below attributes needs to be concatenated for the purpose of generating Checksum:

● Debtor Account Number

● First Collection Date

● Final Collection Date

● Collection Amount

● Max Amount

The above attributes need to be concatenated with “|” symbol appended as the delimiter. The

order of the attributes needs to be as mentioned above. In case any of the attribute is null then

during concatenation the particular attribute will be replaced by an empty string.

Note:

The attributes to be concatenated might be changed at later point of time. Please refer the latest

version of the document for any revision on the attributes that needs to be marked for encryption.

Generate checksum on the concatenated values. We will use SHA-2 as the hash function.

5. Replace the secure information in the XML with the encrypted text. Below are the attributes

which will be encrypted in the request XML

● Debtor Account Number

● First Collection Date

● Final Collection Date

● Collection Amount

● Max Amount

● Phone

● Mobile

● Email

● Pan

The attributes mentioned above needs to be encrypted individually and placed in the respective

XML tags. We will use the below methodology for encryption of secure information.

Encryption Methodology – Asymmetric

Hashing Algorithm – SHA256

Cryptography – RSA/ECB/OAEPWithSHA-256AndMGF1Padding 2048 bits.

 Encryption will be done using the Public Key of the certificate shared by Bank.

6. Signing of the Request XML

The request XML got from Step-2 will be signed using the Private Key certificate of NPCI.

19 | Page

NPCI will send the below data as MIME content to Merchant with type as “application/x-www-form-

urlencoded” in the request body.

Note :Checksum is not required for Cancel,Suspend,Revoke and Custom Cancel flows.

Key Value

MandateReqDoc Output of the Step-3

CheckSumVal
Encrypted Output of Step-1 (only for

Create and Amend)

4.1.1 Encoding of Request XML for Banks

The request XML from NPCI to Bank will be encoded to prevent any malicious attack. Banks will need to

accept the encoded xml content at their end then decode it to get the original content.

The encoded request XML will look as below: -

<?xml version="1.0" encoding="UTF-8"?>

<Document xmlns="http://npci.org/ONMAGS/schema">

 <MndtAuthReq>

 <GrpHdr>

 <NPCI_RefMsgId></NPCI_RefMsgId>

 <CreDtTm></CreDtTm>

 <ReqInitPty>

 <Info>

 <Id></Id>

 <CatCode></CatCode>

 <UtilCode></UtilCode>

 <CatDesc></CatDesc>

 <Name></Name>

 <Spn_Bnk_Nm></Spn_Bnk_Nm>

 </Info>

 </ReqInitPty>

 </GrpHdr>

 <Mndt>

 <MndtReqId></MndtReqId>

 <MndtId>UMRN</MndtId>

 <Mndt_Type></Mndt_Type>

 <Schm_Nm><Schm_Nm>

 <Ocrncs>

 <SeqTp></SeqTp>

 <Frqcy></Frqcy>

20 | Page

 <FrstColltnDt></FrstColltnDt>

 <FnlColltnDt></FnlColltnDt>

 </Ocrncs>

 <ColltnAmt

Ccy="INR"></ColltnAmt>

 <MaxAmt Ccy="INR"></MaxAmt>

 <Dbtr>

 <Nm></Nm>

 <AccNo></AccNo>

 <Acct_Type></Acct_Type>

 <Cons_Ref_No></Cons_Ref_No>

 <Phone></Phone>

 <Mobile></Mobile>

 <Email></Email>

 <Pan></Pan>

 </Dbtr>

 <CrAccDtl>

 <Nm></Nm>

 <AccNo></AccNo>

 <MmbId></MmbId>

 </CrAccDtl>

 </Mndt>

 </MndtAuthReq>

</Document>

4.2 Bank Site Integration Requirements

4.2.1 Net Banking Flow

In case of Netbanking or if the Bank has opted for the old debit card flow, then NPCI ONMAGS would

redirect to Bank Page. The URL for redirection for Net banking should be made available to NPCI by the

banks. NPCI will pass the XML content mentioned in the sheet (“NPCI Mandate Request to Bank”) &

CheckSumVal as part of the request.

The request body will contain the following key-value pair.

Key Value

MandateReqDoc Encrypted and Signed XML

CheckSumVal Encrypted Checksum Hash value (only for

Create and Amend)

21 | Page

Specifics on Signing, Encryption and Checksum are mentioned in the section 4.2.1

Bank site should unsign the XML using the public key of NPCI and then decrypt the key fields using the

private key of the Bank. Checksum should be decrypted using the private key of the Bank. In case of any

errors during unsigning, decryption or checksum validation, Bank needs to construct the Error response

in the format “ErrorXML Resp from Bank to NPCI”.

Below are the validations done at Bank layer for the request received from NPCI. For more details refer

to sheet “NPCI Mandate Request to Bank” in the excel “NPCI Mandate Authorization Specification for

Banks.xlsx” available in the Appendix Section.

 Element
Name

Validation Data Type Lengt
h

Remarks

xmlns Namespace tag. This is mandatory
tag. Value cannot be empty.
Namespace value should be
“http://npci.org/ONMAGS/schema”

Alpha
Numeric

NPCI_RefMsgId NPCI_RefMsgId from NPCI should be
unique

Alpha
Numeric

35 Message ID for NPCI
Reference

CreDtTm Should be in ISO Date time format.
E.g.2017-02-09T15:11:39

Alpha
Numeric

25

ID Request Initiating Party ID. In this
case it will be Corporate / Merchant
ID. Should not be null. Will be
validated if this is a valid Merchant ID
with the master.

Alpha
Numeric

18 ID & UtilCode value
would be the same.

UtilCode Utility Code would be validated
against the masters. It should be 7
digit OLD ICS or 18 digit Utility code.

Alpha
Numeric

18 ID & UtilCode value
would be the same.

CatCode Identifies under which category the
mandate is created. Will be validated
against the masters maintained by
NPCI

Alpha
Numeric

4

Name Should not be empty Alpha
Numeric

40 Corporate Name.

Spn_Bnk_Nm Corporate Sponsor Bank Name Alpha
Numeric

140 Should be a valid Bank
Name as per MMS

CatDesc Category Description should
correspond to Category Code in the
Master

Alpha
Numeric

50

MndtReqId Mandate Req ID length should be <=
35. Should be unique for the day

Alpha
Numeric

35

MndtId This tag will contain the UMRN
generated in MMS for the mandate.

Alpha
Numeric

35 UMRN

22 | Page

Mndt_Type Mandate Type Alpha
Numeric

35 Should be DEBIT

Schm_Nm Scheme Name / Plan Reference
Number

Alpha
Numeric

20

SeqTp Allowed values are RCUR or OOFF Alpha
Numeric

4

Frqcy This is an optional field. If present
should adhere to the list value
available in MMS Masters.

Alpha
Numeric

4 Allowed Values are:
ADHO, INDA, DAIL,
WEEK, MNTH, QURT,
MIAN, YEAR, BIMN

FrstColltnDt Date of First Collection. Mandatory
Field. This field is in ISODate Format

Alpha
Numeric

16

FnlColltnDt Date of Final Collection. Optional
Field. This field is in ISODate Format

Alpha
Numeric

16 If this field is left blank
then deduction will
happen until Cancelled.

ColltnAmt Either of ColltnAmt or MaxAmt is
mandatory.
Amount Should be given as 100.00

Alpha
Numeric

13

MaxAmt Either of ColltnAmt or MaxAmt is
mandatory
 Amount Should be given as 100.00

Alpha
Numeric

13

Debtor Nm Customer name should be maximum
of 40 digit

Alpha
Numeric

40

Debtor AccNo Customer Account Number should
be maximum of 35 digit.

Alpha
Numeric

35

Acct_Type Debtor Account Type Alpha
Numeric

35 Should be either of
SAVINGS or CURRENT

Cons_Ref_No Consumer Reference Number Alpha
Numeric

35

Phone Phone Number of the Customer Alpha
Numeric

16 Should be given in the
format +91-xxx-
xxxxxxxx. +91- is
mandatory.

Mobile Mobile Number of the Customer Alpha
Numeric

14 Should be given in the
format +91-xxxxxxxxxx.
+91- is mandatory.

Email Email ID of the Customer Alpha
Numeric

50 Should be valid email id

Pan Pan Number of the Customer Alpha
Numeric

10 Should be in Valid PAN
format

Creditor Nm Corporate Name. Length will be 40 Alpha
Numeric

140

Creditor AccNo Will be the 18 digit Corporate ID Alpha
Numeric

18

23 | Page

MmbId Will be 11 digit IFSC code Alpha
Numeric

11 IFSC Code of the
Sponsor Bank which is
available in the ONMAG
Live Bank list

Reason Reason for Amend / Cancel /
Suspend / Revoke / Custom cancel
from MMS system

Alpha
Numeric

4

End user would enter his/her net banking credentials information in the authentication page of the bank.

An SMS OTP validation also has to be done as second level authentication.

Upon making a successful login bank should first validate whether the bank account number passed in the

request XML matches the bank account number of the authenticated end user. If the bank account

number does not match the customer would not be allowed to proceed further. Appropriate error

message needs to be displayed to the customer and a link provided to return back to the merchant site.

If the customer is not able to make a successful login after predetermined login attempts the Bank has to

redirect back to the NPCI ONMAGS layer. The reject reason will be “Invalid Login Credentials”.

If the account number matches, then the customer needs to be shown a form which displays specific

details of the mandate and a “Terms & Policy” section displaying terms and policies of the bank. A

confirmation check box needs to be provided for end user for agreeing to the displayed information.

 The below information needs to be mandatorily displayed to the User at the Bank end:

⮚ Mandate request Initiate Party’s Category Description (“CatDesc”) (Only for Create and Amend)

⮚ Name of Initiator (In all operation like create, amend, cancel, suspend and revoke)

⮚ Collection Amount (Only for Create and Amend)

⮚ Max Amount (Only for Create and Amend)

⮚ Recurring Frequency (Only for Create and Amend)

⮚ First Collection Date (Only for Create and Amend)

⮚ Final Collection Date (Only for Create and Amend)

⮚ UMRN (In all operation like create, amend, cancel, suspend and revoke)

User has to be provided links for either accepting the mandate or Rejecting the mandate. On selection of

either of the option the user would be redirected to the NPCI ONMAGS interface. The response should

contain the XML mentioned in the sheet “Response from Bank to NPCI”. The element <AccptncRslt> will

contain the result of the approval status of the mandate. The URL for redirection to NPCI ONMAGS

interface would be shared by NPCI.

The response body will contain the following key-value pair. Bank will send the below data as MIME

content to NPCI with type as “application/x-www-form-urlencoded”.

24 | Page

Key Value

BankID Participant ID of the Bank in NACH

MandateRespDoc Encrypted and Signed XML

CheckSumVal Encrypted Checksum Hash value (only for

Create and Amend)

RespType Will be either of ErrorXML / RespXML

mndtType Mandate type of Request

Note : mndtType will not be present for Create Flow

Below are the steps to be done for securing the content of the Response XML:

1. Generating checksum for the secure information in the XML

The below attributes needs to be concatenated for the purpose of generating Checksum:

a) Accptd

b) AccptRefNo

c) ReasonCode

d) ReasonDesc

e) RejectBy

The above attributes need to be concatenated with “|” symbol appended as the delimiter. The

order of the attributes needs to be as mentioned above.

Note:

The attributes to be concatenated might be changed at later point of time. Please refer the latest

version of the document for any revision on the attributes that needs to be marked for

Generate checksum on the concatenated values. We will use SHA-2 as the hash function.

2. Replace the secure information in the XML with the encrypted text.

The attributes mentioned above needs to be encrypted individually and placed in the respective

XML tags. Encryption should be done using the public key of the certificate which NPCI shares.

We will use the below methodology for encryption of secure information.

25 | Page

Encryption Methodology – Asymmetric

Hashing Algorithm – SHA256

Cryptography – RSA/ECB/OAEPWithSHA-256AndMGF1Padding 2048 bits

Encryption needs to be done using the Public Key of the certificate shared by NPCI.

3. Signing of the Response XML

The response XML got from Step-2 has to be signed using the Private Key certificate of the Bank.

The below are the validation done at NPCI ONMAGS layer for the response received from Bank. For more

details refer to sheet “Response from Bank to NPCI” in the excel “NPCI Mandate Authorization

Specification for Banks” available in the Appendix Section.

Element Name Validation Lengt
h

Remarks

Xmlns Namespace tag. This is mandatory tag. Value
cannot be empty. Namespace value should
be “http://npci.org/ONMAGS/schema”

MsgId This is a reference generated by the bank to
identify the response message. Should be
unique for the day for a Bank

35

GrpHdr -
CreDtTm

Should be in ISO Date time format.
E.g.2017-02-09T15:11:39

25

ReqInitPty Request Initiating Party ID. This will refer to
the Bank Short Code

18

MndtReqId Mandate Request ID should be same as the
MndtReqId send in the original request to
Bank

35

NPCI_RefMsgId Message ID for NPCI Reference in the original
request. Should be same as the
NPCI_RefMsgId send in the original request
to Bank

35

OrgnlMsgInf -
CreDtTm

Creation Date Time send in the original
request to Bank

18

MsgNmId Both the tag & value are optional

Accptd Mandatory. Allowed values are true / false 5 Indicates whether the
mandate request was
accepted or rejected.

AccptRefNo Will be non-empty if accptd is true. Should be
unique for the Bank. If accptd is false empty
value can be provided.

34 Accepted Reference
Number.

26 | Page

ReasonCode Mandatory if <Accptd> value is false. Reason
code should be as per master provided by
NPCI.

5 If acceptance is false,
reason code of rejection is
entered here. If
acceptance is true then
this value would be “N/A”.

ReasonDesc Mandatory. Reason Description should
match the Reason Code specified by NPCI.

50 If acceptance is false,
reason description of
rejection is entered here. If
acceptance is true then
this value would be “N/A”.

RejectBy Mandatory. Should be either of “BANK” or
“USER” or “N/A”

10 If acceptance is true then
this value would be “N/A”.

IFSC Mandatory if <Accptd> tag value is true, IFSC
of the destination bank

11

4.2.2 New Debit Card Flow

In case Bank has opted for the new Debit Card Flow, then from the merchant site, the user will be landing

on the NPCI’s ONMAGS Debit Card authentication page.

Debit Card Information will be accepted in ONMAGS page itself and validated with Bank through server

to server call. The steps in this flow is described below:

The mandate information passed by the merchant will be displayed in the top portion of the page.

27 | Page

User needs to verify the mandate information displayed in the Mandate Details section. Once

mandate information are verified by the user he/she can proceed with entering the Debit Card

information in the lower section of the page.

Below are the validation done related to the entered Debit Card Details

● Card Number should be 16 digit Numerical.

● Expiry Year and Month should be current month or future year month.

● Expiry period cannot be greater than 10 years.

● CVV should be 3 digit Numeric.

● PIN number 4 to 6 digit numeric field

● CVV/PIN/BOTH is mandatory based on the banks preference (Banks can opt for CVV+PIN

(or) either CVV/PIN)

On entering the Debit Card Information user can click on Continue, to proceed with Debit Card

Verification.

In case the user does not want to proceed further with authentication then he/she can click on Cancel.

On clicking on Cancel, the transaction will be cancelled, merchant response gets generated redirects to

the Merchant response page.

4.2.2.1 Request Information to Bank

 Once the User clicks on Continue, ONMAGS will construct the below
JSON request and post to the Bank. Both the Mandate Details and the Card Information will be
passed in the request. The request will be made as an API call to the bank and will happen as a
server to server call. The response to the API call has to be provided in a synchronous manner by the
bank.

JSON Request with Mandate and Card information

{

 "mandateAuthDtls": {

 "transactionID": "<Transaction ID>",

 “mndtType”:”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL attributes>”,

 "mandateRequestDtl": {

 "MandateReqDoc": "<Encrypted and Signed response XML>",

28 | Page

 "CheckSumVal": "<Check sum value of secure attributes>"

 },

 "cardInfo": {

 "cardNo": "<Encrypted Card Number>",

 "expiry": "<Encrypted expiry Date>",

 "cvv": "<Encrypted CVV>",

 "pin": "<Encrypted pin>"

 }

 }

}

Note:
Based on the banks the pin / cvv / pin and cvv will be present. Pin length can be configured as 4 or 6
based on the bank.

● mndtType will not be present for Create Flow

● MandateReqDoc XML will be encoded and sent.

● For encryption the existing logic and keys will be used (i.e, NPCI will do the encryption using the

Public Key provided by the bank and Bank will do the decryption using their private key).

● Pin attribute will be encrypted using separate public key and bank will do decryption using the

respective private key.

Bank needs to first verify the mandate request details and then the card details and provide the

response in any of the below formats.

A. If the destination bank is unable to parse the mandate request it will send the response in the

below format. Bank need not validate the card details if sending failure response (because of

request XML validation failure at bank end).
{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 “mndtType”:”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL attributes>”,

 "mandateValidation": "failure",

 "cardValidation": "none",

 "mandateRejectDtl": {

 "ErrorCode": "<Error Code>",

 "ErrorDesc": "<Error Description>"

 }

 }

}

Note:-

Attribute values mandateValidation, cardValidation, ErrorCode & ErrorDesc needs to be encrypted. Bank
needs to encrypt using NPCI public key.

B. If destination bank is able to successfully parse the mandate request XML but business validation

of XML fails, then bank needs to send the response in the below format. Card details need not be

validated in such a scenario.
{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 “mndtType”:”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL attributes>”,

29 | Page

 "mandateValidation": "failure",

 "cardValidation": "none",

 "mandateRejectDtl": {

 "ReasonCode": "<Reason Code>",

 "ReasonDesc": "<Reason Description>"

 }

 }

}

Note:-

Attribute values mandateValidation, cardValidation, ReasonCode & ReasonDesc needs to be encrypted

I. If the destination bank is able to successfully parse the mandate request XML

and business validation passes, then bank needs to validate the card details.

Bank needs to verify the below details:Verify Debit Card Number

II. Verify Expiry / validity

III. Verify CVV number

IV. Verify PIN number (if its applicable)

V. Account number of debit card matches with the “Debtor AccNo” provided in

the mandate Request XML

If any of the above validation fails, then the bank needs to provide the response as below: -
{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 “mndtType”:”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL attributes>”,

 "mandateValidation": "success",

 "cardValidation": "failure",

 "mandateResponseDtl": {

 "accptRefNo": "<Accept Reference Number>",

 "dbtrIfsc": "<Debtor IFSC>",

 "dbtrAcctType": "<Debtor Account Type>"

 },

 "cardVerifyDtl": {

 "ErrorCode": "<Error Code>"

 }

 }

}

🡺 If Card validation is failure User would be provided with option of reattempting Card validation

further 2 times. An alert message as Invalid Debit Card Details Remaining attemts:2 will appear

on the screen. User can proceed by entering the correct Card details again and continue.

30 | Page

Note:-

Attribute values mandateValidation, cardValidation, AccptRefNo & ErrorCode needs to be encrypted.

The below table provides the error codes details that are newly introduced for Direct Debit Card Flow

error_code
_id

error_desc
applicable_l

eg

601 Invalid Debit Card Number BTN

602 Invalid Expiry / Validity BTN

603 Invalid CVV BTN

604
Debit card information is not matched with the associated
account number

BTN

605 Otp Verification Failure BTN

606 Duplicate Request MTN

607 Previous Request in Progress MTN

608 Bank Restricts Duplicate request MTN

609 Invalid PIN BTN

C. If all the above validation passes, then the bank needs to provide the response as below: -
{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 “mndtType”:”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL attributes>”,

 "mandateValidation": "success",

 "cardValidation": "success",

 "mandateResponseDtl": {

 "accptRefNo": "<Accept Reference Number>",

 "dbtrIfsc": "<Debtor IFSC>",

 "dbtrAcctType": "<Debtor Account Type>"

 },

 "cardVerifyDtl": {

 "successCode": "<Success Code>"

 }

 }

}

31 | Page

Note:-

● Attribute values mandateValidation, cardValidation, AccptRefNo & successCode needs to be

encrypted

● IFSC code is optional field, if banks give invalid IFSC code in the Response ONMAGS system will

update the IFSC code as per the Bank Masters

● Bank needs to store the mandate details received along with the transaction ID for the subsequent

OTP validation.

For scenarios (a), (b) & (c) ONMAGS will construct the merchant rejection response and redirect to the

merchant. Bank needs to mark the mandate as rejected at their end for these scenarios. For scenario (d)

mandate status will be “In Process” for the bank until the OTP verification is completed.

For scenario (d) ONMAGS will redirect to the OTP verification page.

● OTP will be a 6 digit numeric number.

● In case User did not receive OTP, there is an option to Resend OTP which the user can retry

maximum of 3 times.

● Once user clicks on the verify button the entered OTP is encrypted and sent to the server. From

the server end VerifyOTP API call will be made to the bank server.

{

 "otpInfo":

 {

 "transactionID": "<Transaction ID>",

 "otp": "<Encrypted OTP Value>"

 }

}
● In case of retry as well the request will be posted to bank in the above mentioned format only.

The encryption on the OTP will follow the existing encryption methodology. Bank needs to decrypt the
OTP and verify it based on the transaction ID. The OTP verification status needs to be sent in the below
json format by the bank.

{

 "otpVerifyInfo":

 {

 "transactionID": "<Transaction ID>",

 "optVerifyStatus": "<Encrypted OTP verification status. It will be either

success / failure>"

32 | Page

 }

}

If OTP verification is successful only Bank needs to mark the mandate as accepted at their end. Until OTP
validation is passed the mandate would be in non-accepted state at the Bank end.

If OTP validation is failure User would be provided with option of reattempting OTP validation further 2
times. An alert message as below will be shown to the user. User can then proceed with entering the
correct OTP again and re-verify.

Resend OTP:
{

 "debitAuthDtls": {

 "transactionID": "",

 "cardInfo": {

 "cardNo": "",

 "expiry": "",

 "cvv": ""

 "pin": "<Encrypted pin>"

 }

 }

}

33 | Page

4.2.3 Aadhaar Based Authentication Flow

Step1: Customer has initiated the request via Merchant Portal i.e., Web Browser

Step2: Customer will be redirected to ONMAGS Platform to enter the details required for Aadhaar

authentication.

Step3: Customer enters Aadhaar Number along with required details.

Step4: ONMAGS Platform will forward that request to UIDAI for Customer Authentication via OTP

generation

Step5: UIDAI will generate the OTP and send it to Customer’s registered mobile number for Authentication

Step6: Customer will enter the OTP in the ONMAGS OTP page

Step7: ONMAGS Platform will forward that OTP to UIDAI for Verification

Step8: UIDAI sends response for OTP Verification. If the request is not authenticated by UIDAI then the

flow ends here by showing the error message in Merchant Portal.

Step9: Once the customer is successfully authenticated, then the ONMAGS platform will send the

mandate request to destination bank. If customer bank doesn’t opt for additional OTP authentication then

skip Step 10, Step 11 and Step 12.

Step10: After customer successfully authenticated by UIDAI, he/she will be landed on ONMAGS OTP page.

ONMAGS will send an API request to customer’s Bank to verify the customer details will generate the Bank

OTP and send it to customer for Authentication.

34 | Page

Step11: Customer will enter the Bank OTP in ONMAGS platform for Authentication.

Step12: ONMAGS platform will forward that OTP to destination bank for Verification.

Step13: If OTP verification is successful only Bank needs to mark the mandate as accepted at their end.
Until OTP validation is passed the mandate would be in non-accepted state at the Bank end.

Step 14: ONMAGS Platform in turn redirects the response to Merchant Web Page where customer can

view the response.

Auth mode: Aadhaar

Privilege: Initiated by ONMAGS (NPCI)

API type: Sync

Request Type: JSON

HTTP Method: POST

Parameter Specification

Parameters Data Type Description

mandateAuthDtls JSON Object This will contains mandate

Request details and aadhaar

Info

transactionID String This is used for the complete

transaction for mandate

registration. ALPNUM String

with Length is 20.

mandateRequestDtl JSON Object This will contains Encrypted

mandate Request Doc XML

and Encrypted checksum value

MandateReqDoc String See below table for Mandate

Request Doc.

CheckSumVal String How to generate Checksum

value is mentioned above.

35 | Page

authMode String If Authmode is null, then user

will get cardInfo JSON Object

and consider as authomode as

Debit Card else authMode

value will be Aadhaar and user

will get aadhaarInfo JSON

Object in request.

aadhaarInfo JSON Object This will contains the aadhaar

details and flag indicating that

the customer authentication

has been successful though

UIDAI.

aadhaarNo String Last four digit of aadhaar

number

uidaiAuthenticated Char Always Y to be sent

Mandate Request to Bank:

{

 "mandateAuthDtls": {

 "transactionID": "<Transaction ID>",

 “mndtType”:”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL attributes>”,

 "mandateRequestDtl": {

 "MandateReqDoc": "<Encrypted and Signed request XML>",

 "CheckSumVal": "<Check sum value of secure attributes>"

 },

 "authMode":"Aadhaar",

 "aadhaarInfo": {

 "aadhaarNo": "<Encrypted Aadhaar Number>",

 “uidaiAuthenticated” : “Y”

 }

 }

}

Unencrypted and Unsigned request XML for MandateReqDoc Key:

Element Name Validation Data Type Length Remarks

36 | Page

Xmlns Namespace tag. This is mandatory
tag. Value cannot be empty.
Namespace value should be
“http://npci.org/ONMAGS/schema”

Alpha
Numeric

NPCI_RefMsgId NPCI_RefMsgId from NPCI should be
unique

Alpha
Numeric

35 Message ID for
NPCI Reference

CreDtTm Should be in ISO Date time format.
E.g.2017-02-09T15:11:39

Alpha
Numeric

25

ID Request Initiating Party ID. In this
case it will be Corporate / Merchant
ID. Should not be null. Will be
validated if this is a valid Merchant
ID with the master.

Alpha
Numeric

18 ID & UtilCode value
would be the same.

UtilCode Utility Code would be validated
against the masters. It should be 18
digit Utility code.

Alpha
Numeric

18 ID & UtilCode value
would be the same.

CatCode Identifies under which category the
mandate is created. Will be
validated against the masters
maintained by NPCI

Alpha
Numeric

4

Name Should not be empty Alpha
Numeric

40 Corporate Name.

Spn_Bnk_Nm Corporate Sponsor Bank Name Alpha
Numeric

140 Should be a valid
Bank Name as per
MMS

CatDesc Category Description should
correspond to Category Code in the
Master

Alpha
Numeric

50

MndtReqId Mandate Req ID length should be <=
35. Should be unique for the day

Alpha
Numeric

35

37 | Page

MndtId This tag will contain the UMRN
generated in MMS for the mandate.

Alpha
Numeric

20 UMRN

Mndt_Type Mandate Type Alpha 35 Should be DEBIT

Schm_Nm Scheme Name / Plan Reference
Number

Alpha
Numeric

20

SeqTp Allowed values are RCUR or OOFF Alpha
Numeric

4

Frqcy This is an optional field. If present
should adhere to the list value
available in MMS Masters.

Alpha
Numeric

4 Allowed Values are:
ADHO, INDA, DAIL,
WEEK, MNTH,
QURT, MIAN, YEAR,
BIMN

FrstColltnDt Date of First Collection. Mandatory
Field. This field is in ISODate Format

Alpha
Numeric

16

FnlColltnDt Date of Final Collection. Optional
Field. This field is in ISODate Format

Alpha
Numeric

16 If this field is left
blank then
deduction will
happen until
Cancelled.

ColltnAmt Either of ColltnAmt or MaxAmt is
mandatory.

Amount Should be given as 100.00

Alpha
Numeric

13

MaxAmt Either of ColltnAmt or MaxAmt is
mandatory

 Amount Should be given as 100.00

Alpha
Numeric

13

Debtor Nm Customer name should be maximum
of 35 digit

Alpha
Numeric

40

38 | Page

Debtor AccNo Customer Account Number should
be maximum of 35 digit.

Alpha
Numeric

35

Acct_Type Debtor Account Type Alpha 35 Should be either of
SAVINGS or
CURRENT

Cons_Ref_No Consumer Reference Number Alpha
Numeric

20

Phone Phone Number of the Customer Alpha
Numeric

34 Should be given in
the format +91-xxx-
xxxxxxxx. +91- is
mandatory.

Mobile Mobile Number of the Customer Alpha
Numeric

34 Should be given in
the format +91-
xxxxxxxxxx. +91- is
mandatory.

Email Email ID of the Customer Alpha
Numeric

50 Should be valid
email id

Pan Pan Number of the Customer Alpha
Numeric

27 Should be in Valid
PAN format

Creditor Nm Corporate Name. Length will be 40 Alpha
Numeric

140

Creditor AccNo Will be the 18 digit Corporate ID Alpha
Numeric

18

MmbId Will be 11 digit IFSC code Alpha
Numeric

11 IFSC Code of the
Sponsor Bank which
is available in the
ONMAG Live Bank
list

MndtId Will be 20 digit UMRN Alpha
Numeric

20 Except Create Flow

39 | Page

ReasonCode will be 4 digit Reason code Alpha
Numeric

4 Except Create Flow

Bank needs to first verify the mandate request details

a) If the destination bank is unable to parse the mandate request it will send the response in the
below format. Bank need not validate the aadhaar details if sending failure response (because
of request XML validation failure at bank end).

Parameters Datatypes Description

mandateVerifyDtls JSON Object Mandate verify details contains

transaction ID, mandate

Validation and mandate reject

details

transactionID String This is the same transaction ID

which Is passed in request for

mandate registration. ALPNUM

String with Length is 20.

mndtType String This will contain the operation

AMEND / CANCEL / SUSPEND/

REVOKE /CUSTOM_CANCEL.

mndtType will not be present

for Create Flow.

mandateValidation String This will return either success

or failure.

aadhaarValidation String This will return either success

or failure.

mandateRejectDtl JSON Object This will contain error code and

error desc

ErrorCode Integer This will be between 000 to 999

40 | Page

ErrorDesc String This will be the corresponding

error description for the error

code.

signature String The Response payload will

be signed with bank’s

private key and algorithm

used as RSA_USING_SHA256

checkSumVal String Generate checksum on the

entire payload. We will use

SHA-2 as the hash function

Error Response from Bank for Mandate request:

{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 “mndtType”:”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL attributes>”,

 "mandateValidation": "failure",

 "aadhaarValidation": "none",

 "mandateRejectDtl": {

 "ErrorCode": "<Error Code>",

 "ErrorDesc": "<Error Description>"

 }

},

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

}

Note:-

Attribute values Mandate Validation, Aadhaar Validation, Error Code & ErrorDesc needs to be encrypted.

Bank needs to encrypt using NPCI public key.

b) If destination bank is able to successfully parse the mandate request XML but business validation
of XML fails, then bank needs to send the response in the below format. Aadhaar details need
not be validated in such a scenario.
{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 “mndtType”:”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL attributes>”,

 "mandateValidation": "failure",

 "aadhaarValidation": "none",

41 | Page

 "mandateRejectDtl": {

 "ReasonCode": "<Reason Code>",

 "ReasonDesc": "<Reason Description>"

 }

},

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

}

Note:-

Attribute values Mandate Validation, Aadhaar Validation, Reason

Code,Reason Desc & checkSumVal needs to be encrypted

c) Aadhaar Validation

1. Aadhaar number of debtor should matches with the “Aadhaar linked with the Debtor
AccNo” provided in the mandate Request XML

2. Aadhaar number should linked with the debtor Account Number.

If the above validation fails then the bank needs to provide the response as above format 2nd type.

{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 “mndtType”:”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL attributes>”,

 "mandateValidation": "success",

 "aadhaarValidation": "failure",

 "mandateResponseDtl": {

 "accptRefNo": "<Accept Reference Number>",

 "dbtrIfsc": "<Debtor IFSC>",

 "dbtrAcctType": "<Debtor Account Type>"

 },

 " aadhaarRejectDtl ": {

 "ReasonCode": "<Reason Code>"

 }

},

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

}

The below table provides the error codes for different failure reasons.

Failure Reason Reason Code

Aadhaar number Does not Match with

debtor Account number

AP48

Aadhaar number not linked with the

debtor Account number

AP51

42 | Page

d. If all the above validation passes then the bank needs to provide the success response as
below:-

Success Response for Mandate request to Bank:

{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 “mndtType”:”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL attributes>”,

 "mandateValidation": "success",

 "aadhaarValidation": "success",

 "mandateResponseDtl": {

 "accptRefNo": "<Accept Reference Number>",

 "dbtrIfsc": "<Debtor IFSC>",

 "dbtrAcctType": "<Debtor Account Type>"

 },

 "aadhaarVerifyDtl": {

 "successCode": "<Success Code>"

 }

},

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

}

The below table provides the code for the success

Success Reason Success Code

Aadhaar number matches with

Aadhaar linked with debtor account

number Validation Passed

000

Note:-

i. Attribute values mandateValidation, aadhaarValidation, AccptRefNo , successCode &b
checkSumVal needs to be encrypted.

ii. Bank needs to store the mandate details received along with the transaction ID for the
subsequent OTP validation.

For scenarios (a), (b) and (c) ONMAGS will construct the merchant rejection response and redirect to the

merchant. Bank needs to mark the mandate as rejected at their end for these scenarios. For scenario (d)

if bank has opted for OTP validation then mandate status will be “In Process” for the bank until the OTP

verification is completed, else mandate status will be “Accept” and send the response back to ONMAGS.

For scenario (d) ONMAGS will redirect to the OTP verification page.

Below are the steps to be done for securing the content of the Response JSON:

43 | Page

1. Generating checksum for the secure information in the Response JSON (Mandate and

Aadhaar validation)

The below attributes need to be concatenated for the purpose of generating Checksum:

A. Transaction ID

B. Mandate Validation

C. Accepted Ref No.

D. Dbtr Account type

E. Dbtr IFSC

F. Reason Code

G. Reason Desc

H. Error Code

I. Error Desc

J. Aadhaar Validation

K. Success Code

L. Aadhaar Reason Code

M. Aadhaar Error Code

N. JSON Web Signature

2. Generating checksum for the secure information in the Response JSON (OTP Validation)

The below attributes need to be concatenated for the purpose of generating Checksum:

A. Transaction ID

B. Verify Status

C. Error Code

D. Reason Code

E. JSON Web Signature

The above attributes need to be concatenated with “|” symbol appended as the delimiter. The order of

the attributes needs to be as mentioned above.

Note:

The attributes to be concatenated might be changed at a later point of time. Please refer the

latest version of the document for any revision on the attributes that needs to be marked for

Generate checksum on the concatenated values. We will use SHA-2 as the hash function.

3. Signing of the Response JSON

● The complete response we are going to use as a payload.

44 | Page

● The response JSON has to be signed using the Private Key certificate of the Bank.

● Json Web Signature is used for generating digital signatures and the same will

be validated at the NPCI end.

Note :

● Except transaction ID, Dbtr Account Type and Dbtr IFSC field, all the fields are encrypted. For

generating checksum, we are going to use encrypted values. If value is not present in response,

then we will use empty string for that key.

● Since we are using Signature value while generating Checksum, so that first we need to sign the

response then generate checksum

Bank OTP Verification Request for Same Mandate request:

Parameters DataTypes Description

otpInfo JSON Object This will contains the

transaction Id same used in

OTP generation and Encrypted

OTP which is received on

registered mobile in bank

transactionID String Same transaction ID used in

mandate request to bank.

ALPNUM String with Length is

20.

otp String Encrypted OTP received on

registered mobile in the bank.

Length is 4.

{

 "otpInfo": [

 {

 "transactionID": "<Transaction ID>",

 "otp": "<Encrypted OTP Value>"

 }

]

}

● In case of retry as well the request will be posted to bank in the above mentioned format
only.

45 | Page

The encryption on the OTP will follow the existing encryption methodology. Bank needs to decrypt the
OTP and verify it based on the transaction ID. The OTP verification status needs to be sent in the below
json format by the bank.

Response From Bank for Bank OTP Verification for the same Mandate request:

Parameters DataTypes Description
otpVerifyInfo JSON Object This will contain the same

transaction Id which is sent in
mandate request to bank and
encrypted status as success or
failure.

transactionID String Transaction Id is the same Which
is sent in verify request bank OTP.
ALPNUM String with

Length is 20.
optVerifyStatus String Encrypted OTP verification status.

It will be either success / failure

a) If OTP verification at bank end is success then the response will be as below:
{

 "otpVerifyInfo":

 {

 "transactionID": "<Transaction ID>",

 "optVerifyStatus": "success",

 “errorCode” : “”,

 “reasonCode”: “”

 },

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

}

b) If OTP verification failed at bank end then response will be as below:

{

 “otpVerifyStatus”: {

 “transactionID” : “<Transaction ID>”,

 “optVerifyStatus”:”failure”,

 “errorCode”:””,

 “reasonCode” : <Reason Code>

 },

 “signature”:”<Encrypted and Signed response JSON>”,

46 | Page

 “checkSumVal” : “<Check sum value of complete payload”

}

Failure Reason Reason Code

Bank OTP invalid AP39

Maximum tries exceeded for OTP AP40

Time expired for OTP AP41

Bank Aadhaar OTP Verification response failed AP50

If OTP verification is successful only Bank needs to mark the mandate as accepted at their end. Until OTP
validation is passed the mandate would be in non-accepted state at the Bank end.

If OTP validation is failure User would be provided with option of reattempting OTP validation further 2
times. An alert message as below will be shown to the user. User can then proceed with entering the
correct OTP again and re-verify.

Request for Resend Bank OTP:

Parameters Datatypes Description
mandateAuthDtls JSON Object This will contains transaction Id

same which is sent in the first
generate bank OTP request and
encrypted aadhaar number

transactionID String transaction Id same which is sent
in the mandate request to bank.
ALPNUM String with

Length is 20.
aadhaarInfo JSON Object This will contains Encrypted

aadhaar number
aadhaarNo String Encrypted aadhaar number only

last four digit.

JSON Request:

{

 "aadhaarAuthDtls": {

 "transactionID": "<Transaction ID>",

 "aadhaarInfo": {

 "aadhaarNo": "< Encrypted Aadhaar Number>"

 }

 }

}
❖ Response for Resend Request will be ‘200’ status code.

❖ If OTP verification is successful only Bank needs to register the mandate as accepted at their

end.
❖ In case OTP verification fails in all the attempts bank can mark the mandate as rejected at their

end.

47 | Page

Bank will not generate any OTP, skip the OTP verification step and needs to mark the mandate as accepted

at their end.

Technical Integration requirement for Aadhaar Authentication

1.Connectivity:

 Communication between NPCI to Bank Server with specific port

2. Certificates

🡺 Bank SSL certificate(FQDNS)

🡺 Bank Signing certificate

3.Keys exchange for UIDAI Authentication

🡪 Bank should share their AUA Keys

Bank has to share the keys as part of onboarding process, else we will use NPCI AUA Key

4.2.4 PAN/CUST ID authentication mode

Step1: Customer has initiated the request via Merchant Portal i.e., Web Browser

Step2: Customer will be redirected to ONMAGS Platform to enter the details required for PAN / Cust ID

authentication.

48 | Page

Step3: Customer enters PAN Number / Cust ID along with required details.

Step4: If the amount value of the mandate is greater than the defined value, then the flow ends here by

showing the error message in Merchant Portal

If the amount value of the mandate is less than or equal to the defined value, then the ONMAGS platform

will send the mandate request to destination bank.

Step5: Once mandate details and PAN/Cust ID details verified, bank will provide response bank to

ONMAGS. If the mandate details and PAN / Cust ID details verification is failed, bank will provide faliure

response to ONMAGS and same will be routed to merchant. The flow ends here.

Step6: Bank will send OTP to the registered mobile number of the customer.

Step7: Once mandate details and PAN / Cust ID details verified at bank successfully, he/she will be landed

on ONMAGS OTP page. ONMAGS will send an API request to customer’s Bank to verify the customer

details will generate the Bank OTP and send it to customer for Authentication.

Step8 : Customer will enter the Bank OTP in ONMAGS platform for Authentication. ONMAGS platform

will forward that OTP to destination bank for Verification.

Step9: If OTP verification is successful only Bank needs to mark the mandate as accepted at their end.

Until OTP validation is passed the mandate would be in non-accepted state at the Bank end.

Step 10: ONMAGS Platform in turn redirects the response to Merchant Web Page where customer can

view the response.

Auth mode: PAN/Cust ID

Privilege: Initiated by ONMAGS (NPCI)

API type: Sync

Request Type: JSON

HTTP Method: POST

Parameter Specification

Parameters Data Type Description

mandateAuthDtls JSON Object This will contains mandate

Request details and aadhaar

Info

49 | Page

transactionID String This is used for the complete

transaction for mandate

registration. ALPNUM String

with Length is 20.

mndtType String This will contain the operation

AMEND / CANCEL / SUSPEND/

REVOKE /CUSTOM_CANCEL.

mndtType will not be present

for Create Flow.

mandateRequestDtl JSON Object This will contains Encrypted

mandate Request Doc XML

and Encrypted checksum value

MandateReqDoc String See below table for Mandate

Request Doc.

CheckSumVal String How to generate Checksum

value is mentioned above.

authMode String If Authmode is PAN, then user

will get user will get panInfo

JSON. If Authmode is CustID ,

then user will get user will get

custidInfo JSON

panInfo / custidInfo JSON Object This will contains the PAN or

Cust ID based on the

authentication mode selection.

pan/custId String PAN/Cust ID of the user

Mandate Request to Bank:

For PAN based authentication

50 | Page

{

 "mandateAuthDtls": {

 "transactionID": "<Transaction ID>",

 "mndtType": "< AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL>",

 "mandateRequestDtl": {

 "MandateReqDoc": "<Encrypted and Signed request XML>",

 },

 "authMode": "PAN",

 "panInfo": {

 "pan": "<Encrypted PAN>”

 }

 }

}

For Cust ID based authentication

{

 "mandateAuthDtls": {

 "transactionID": "<Transaction ID>",

 "mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL>",

 "mandateRequestDtl": {

 "MandateReqDoc": "<Encrypted and Signed request XML>",

 },

 "authMode": "custid",

 "custidInfo": {

 "custid": "<Encrypted custid>”

 }

 }

}

Note :

 mndtType will not be present for Create Flow

 Unencrypted and Unsigned request XML for MandateReqDoc Key is similar to New debit and

aadhaar authentication mode:

 Bank needs to first verify the mandate request details

a) If the destination bank is unable to parse the mandate request it will send the response in the
below format. Bank need not validate the PAN/Cust ID details if sending failure response
(because of request XML validation failure at bank end).

Parameters Datatypes Description

mandateVerifyDtls JSON Object Mandate verify details contains

transaction ID, mandate

Validation and mandate reject

details

transactionID String This is the same transaction ID

which Is passed in request for

51 | Page

mandate registration. ALPNUM

String with Length is 20.

mndtType String This will contain the operation

AMEND / CANCEL / SUSPEND/

REVOKE /CUSTOM_CANCEL.

mndtType will not be present

for Create Flow.

mandateValidation String This will return either success

or failure.

panValidation / custidValidation String This will return either success

or failure.

mandateRejectDtl JSON Object This will contain error code and

error desc

ErrorCode Integer This will be between 000 to 999

ErrorDesc String This will be the corresponding

error description for the error

code.

signature String The Response payload will be

signed with bank’s private key

and algorithm used as

RSA_USING_SHA256

checkSumVal String Generate checksum on the

entire payload. We will use

SHA-2 as the hash function

Error Response from Bank for Mandate request:

For PAN authentication mode

{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

52 | Page

 "mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL>",

 "mandateValidation": "failure",

 "panValidation": "none",

 "mandateRejectDtl": {

 "ErrorCode": "<Error Code>",

 "ErrorDesc": "<Error Description>"

 }

 },

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

}

For Cust ID based authentication

{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 "mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL>",

 "mandateValidation": "failure",

 " custidValidation ": "none",
 "mandateRejectDtl": {

 "ErrorCode": "<Error Code>",

 "ErrorDesc": "<Error Description>"

 }

 },

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

 }

Note:-

Attribute values Mandate Validation, PAN/CustID Validation, Error Code & ErrorDesc needs to be

encrypted. Bank needs to encrypt using NPCI public key.

b) If destination bank is able to successfully parse the mandate request XML but business
validation of XML fails, then bank needs to send the response in the below format. PAN/Cust ID
details need not be validated in such a scenario.

For PAN authentication mode

{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 "mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL>",

 "mandateValidation": "failure",

 "panValidation": "none",

 "mandateRejectDtl": {

 "ReasonCode": "<Reason Code>",

 "ReasonDesc": "<Reason Description>"

 }

 },

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

}

53 | Page

For CustID authentication mode

{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 "mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL>",

 "mandateValidation": "failure",

 "custidValidation": "none",

 "mandateRejectDtl": {

 "ReasonCode": "<Reason Code>",

 "ReasonDesc": "<Reason Description>"

 }

 },

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

}

Note:-

Attribute values Mandate Validation, PAN Validation/Custid validation, Reason Code,Reason
Desc & checkSumVal needs to be encrypted

c) Validation at banks

 For PAN authentication mode PAN of debtor should match with the “PAN linked with the
Debtor AccNo” provided in the mandate Request XML

If the above validation fails, then the bank needs to provide the response as above format

2nd type.
{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 "mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL>",

 "mandateValidation": "success",

 "panValidation": "failure",

 "mandateResponseDtl": {

 "accptRefNo": "<Accept Reference Number>",

 "dbtrIfsc": "<Debtor IFSC>",

 "dbtrAcctType": "<Debtor Account Type>"

 },

 " panRejectDtl ": {

 "ReasonCode": "<Reason Code>"

 }

 },

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

 }

 For Cust ID authentication mode[DG1]

If the above validation fails, then the bank needs to provide the response as above format 2nd

type.

{

 "mandateVerifyDtls": {

54 | Page

 "transactionID": "<Transaction ID>",

 "mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL>",

 "mandateValidation": "success",

 "custidValidation": "failure",

 "mandateResponseDtl": {

 "accptRefNo": "<Accept Reference Number>",

 "dbtrIfsc": "<Debtor IFSC>",

 "dbtrAcctType": "<Debtor Account Type>"

 },

 " custidRejectDtl ": {

 "ReasonCode": "<Reason Code>"

 }

 },

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

 }

If all the above validation passes then the bank needs to provide the success response as below:-

d) Success Response for Mandate request to Bank:

For PAN authentication

{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 "mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL>",

 "mandateValidation": "success",

 "panValidation": "success",

 "mandateResponseDtl": {

 "accptRefNo": "<Accept Reference Number>",

 "dbtrIfsc": "<Debtor IFSC>",

 "dbtrAcctType": "<Debtor Account Type>"

 },

 "panVerifyDtl": {

 "successCode": "<Success Code>"

 }

 },

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

}

For Cust ID authentication

{

 "mandateVerifyDtls": {

 "transactionID": "<Transaction ID>",

 "mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL>",

 "mandateValidation": "success",

 "custidValidation": "success",

 "mandateResponseDtl": {

 "accptRefNo": "<Accept Reference Number>",

 "dbtrIfsc": "<Debtor IFSC>",

 "dbtrAcctType": "<Debtor Account Type>"

 },

 "custidVerifyDtl": {

 "successCode": "<Success Code>"

 }

 },

 "signature": "<Encrypted and Signed response JSON>",

55 | Page

 "checkSumVal": "<Check sum value of complete payload>"

}

Note:-

iii. Attribute values mandateValidation, panValidation/custidValidation, AccptRefNo ,
successCode &b checkSumVal needs to be encrypted.

iv. Bank needs to store the mandate details received along with the transaction ID for the
subsequent OTP validation.

For scenarios (a), (b) and (c) ONMAGS will construct the merchant rejection response and redirect to the

merchant. Bank needs to mark the mandate as rejected at their end for these scenarios. For scenario (d)

if bank has opted for OTP validation then mandate status will be “In Process” for the bank until the OTP

verification is completed, else mandate status will be “Accept” and send the response back to ONMAGS.

For scenario (d) ONMAGS will redirect to the OTP verification page.

Below are the steps to be done for securing the content of the Response JSON:

4. Generating checksum for the secure information in the Response JSON (Mandate and Pan

validation/Cust Id validation)

The below attributes need to be concatenated for the purpose of generating Checksum:

O. Transaction ID

P. Mandate Validation

Q. Accepted Ref No.

R. Dbtr Account type

S. Dbtr IFSC

T. Reason Code

U. Reason Desc

V. Error Code

W. Error Desc

X. Pan Validation / Cust Id validation

Y. Success Code

Z. Aadhaar Reason Code

AA. Aadhaar Error Code

BB. JSON Web Signature

5. Generating checksum for the secure information in the Response JSON (OTP Validation)

The below attributes need to be concatenated for the purpose of generating Checksum:

56 | Page

F. Transaction ID

G. Verify Status

H. Error Code

I. Reason Code

J. JSON Web Signature

The above attributes need to be concatenated with “|” symbol appended as the delimiter. The order of

the attributes needs to be as mentioned above.

Note:

The attributes to be concatenated might be changed at a later point of time. Please refer the

latest version of the document for any revision on the attributes that needs to be marked for

Generate checksum on the concatenated values. We will use SHA-2 as the hash function.

6. Signing of the Response JSON

● The complete response we are going to use as a payload.

● The response JSON has to be signed using the Private Key certificate of the Bank.

● Json Web Signature is used for generating digital signatures and the same will

be validated at the NPCI end.

Note :

● Except transaction ID, Dbtr Account Type and Dbtr IFSC field, all the fields are encrypted. For

generating checksum, we are going to use encrypted values. If value is not present in response,

then we will use empty string for that key.

● Since we are using Signature value while generating Checksum, so that first we need to sign the

response then generate checksum

Bank OTP Verification Request for Same Mandate request:

Parameters DataTypes Description

otpInfo JSON Object This will contains the

transaction Id same used in

OTP generation and Encrypted

OTP which is received on

registered mobile in bank

57 | Page

transactionID String Same transaction ID used in

mandate request to bank.

ALPNUM String with Length is

20.

otp String Encrypted OTP received on

registered mobile in the bank.

Length is 4.

{

 "otpInfo": [

 {

 "transactionID": "<Transaction ID>",

 "otp": "<Encrypted OTP Value>"

 }

]

}

● In case of retry as well the request will be posted to bank in the above mentioned format
only.

The encryption on the OTP will follow the existing encryption methodology. Bank needs to decrypt the
OTP and verify it based on the transaction ID. The OTP verification status needs to be sent in the below
json format by the bank.

Response From Bank for Bank OTP Verification for the same Mandate request:

Parameters DataTypes Description
otpVerifyInfo JSON Object This will contain the same

transaction Id which is sent in
mandate request to bank and
encrypted status as success or
failure.

transactionID String Transaction Id is the same Which
is sent in verify request bank OTP.
ALPNUM String with

Length is 20.
optVerifyStatus String Encrypted OTP verification status.

It will be either success / failure

e) If OTP verification at bank end is success then the response will be as below:
{

 "otpVerifyInfo":

 {

 "transactionID": "<Transaction ID>",

 "optVerifyStatus": "success",

 “errorCode” : “”,

 “reasonCode”: “”

58 | Page

 },

 "signature": "<Encrypted and Signed response JSON>",

 "checkSumVal": "<Check sum value of complete payload>"

}

f) If OTP verification failed at bank end then response will be as below:
{

 “otpVerifyStatus”: {

 “transactionID” : “<Transaction ID>”,

 “optVerifyStatus”:”failure”,

 “errorCode”:””,

 “reasonCode” : <Reason Code>

 },

 “signature”:”<Encrypted and Signed response JSON>”,

 “checkSumVal” : “<Check sum value of complete payload”

}

Failure Reason Reason Code

Bank OTP invalid AP39

Maximum tries exceeded for OTP AP40

Time expired for OTP AP41

If OTP verification is successful only Bank needs to mark the mandate as accepted at their end. Until OTP
validation is passed the mandate would be in non-accepted state at the Bank end.

If OTP validation is failure User would be provided with option of reattempting OTP validation further 2
times. An alert message as below will be shown to the user. User can then proceed with entering the
correct OTP again and re-verify.

Request for Resend Bank OTP for PAN authentication mode:

Parameters Datatypes Description
mandateAuthDtls JSON Object This will contains transaction Id

same which is sent in the first
generate bank OTP request and
encrypted aadhaar number

transactionID String transaction Id same which is sent
in the mandate request to bank.
ALPNUM String with

Length is 20.
panInfo JSON Object This will contains Encrypted PAN
pan String Encrypted PAN

JSON Request:

{

 "mandateAuthDtls": {

 "transactionID": "<Transaction ID>",

 "panInfo": {

 "pan": "< Encrypted PAN Number>"

 }

 }

}

59 | Page

Request for Resend Bank OTP for CustID authentication mode:

Parameters Datatypes Description
mandateAuthDtls JSON Object This will contains transaction Id

same which is sent in the first
generate bank OTP request and
encrypted aadhaar number

transactionID String transaction Id same which is sent
in the mandate request to bank.
ALPNUM String with

Length is 20.
custidInfo JSON Object This will contains Encrypted

custid
custid String Encrypted custid

JSON Request:

{

 "mandateAuthDtls": {

 "transactionID": "<Transaction ID>",

 "custidInfo": {

 "custid": "< Encrypted PAN Number>"

 }

 }

}

❖ Response for Resend Request will be ‘200’ status code.

❖ If OTP verification is successful only Bank needs to register the mandate as accepted at their

end.
❖ In case OTP verification fails in all the attempts bank can mark the mandate as rejected at their

end.

4.3 Signing and Encryption process

Below is the process for encryption & signing during the various flows.

⮚ NPCI to Bank

❖ Encryption will be done using the Public Key of the certificate shared by Bank.

❖ Signing Using Private key certificate of NPCI

⮚ Bank to NPCI

❖ Encryption will be done using the Public Key of the certificate shared by NPCI.

❖ Signing Using Private key certificate of Bank

60 | Page

4.4 Encoding Guidelines

The request XML & response XML posted to NPCI and received from NPCI should in encoded format. As

part of encoding specific characters would be replaced by escaped character of those.

Symbol Spelled Escaped Character

‘ Single Quotes '

“ Double Quotes "

& Ampersand &

< Less Than <

> Greater Than >

5. Response through Offline Server to Server Communication

To account for online failures, the response from Bank to NPCI needs to be sent using server to server

communication as well.

NPCI will expose an API for accepting server to server communication from Bank. Bank needs to invoke

this URL for posting response through server to server communication.

Note:

➢ Since communication is received both by browser redirection & server to server call, NPCI would

mark the status of the transaction based on the first response received. The second

communication received would be ignored.

➢ Error Code & Error Description list will be shared by NPCI.

5.1 Handling of Time out / not reachable Scenarios

During the entire flow time out can happen at various stages. The following timeouts needs to be

maintained at individual levels across the participating entities.

61 | Page

Flow Auth Mode/Request Timeout Remarks

NPCI to Bank

Old Net Banking/Debit

Card

30Min No response from Bank for original

request & for 3 subsequent sync requests.

Request will be marked as timed out at

NPCI. (merchant can use Status API to

know the status of the request)

New Debit Card – Submit

Card Details

90 Sec No response from Bank for original

request & for 3 subsequent sync requests.

Request will be marked as timed out at

NPCI and user will be redirected to

merchant site with appropriate error code

New Debit Card – OTP

Verification

90 Sec No response from Bank for original

request & for 3 subsequent sync requests.

Request will be marked as timed out at

NPCI and user will be redirected to

merchant site with appropriate error code

Aadhaar Authentication –

Aadhaar verification by

UIDAI

90 Sec No response from UIDAI for original

request. Request will be marked as timed

out at NPCI and user will be redirected to

merchant site with appropriate error code

Aadhaar Authentication –

Aadhaar OTP

Authentication

90 Sec No response from Bank for original

request & for 3 subsequent sync requests.

Request will be marked as timed out at

NPCI and user will be redirected to

merchant site with appropriate error code

Aadhaar Authentication –

Account verification by

Bank

90 Sec No response from Bank for original

request & for 3 subsequent sync requests.

Request will be marked as timed out at

NPCI and user will be redirected to

merchant site with appropriate error code

62 | Page

Aadhaar Authentication –

Bank OTP Authentication

90 Sec No response from Bank for original

request & for 3 subsequent sync requests.

Request will be marked as timed out at

NPCI and user will be redirected to

merchant site with appropriate error code

Explained below are the actions taken at NPCI ONMAGS layer for timeouts happening at various levels.

➢ NPCI to Bank

Scenario-1: Destination Bank not reachable

Action: The request will be auto closed as Failed at NPCI end after the specified duration.

Merchant will be shown respective error code.

➢ Bank to NPCI

Scenario-1: Bank has not responded to NPCI within the timeout period.

Action: NPCI will send list of transactions for which communication is not received from Bank at

periodic interval. Once the pre-defined cut off time for the transaction is reached the transaction

would be marked as “No Response from Bank” auto closed.

Scenario-2: Bank sends response to NPCI after the timeout period

Action: Any response after the time out period would be ignored by NPCI ONMAGS. The

transaction would be treated as no response from Bank and the action for Scenario-1 would be

followed.

Scenario-3: Bank sends invalid response to NPCI within the timeout period

Action: NPCI ONMAGS will mark the transaction as “Invalid Response from Bank” and

corresponding Response XML with applicable error code will be send to Merchant.

Scenario-4: Bank is unable to reach NPCI.

Action: Bank needs to communicate the response to NPCI using server to server call. NPCI will

update the transaction status at our end. (applicable only for net banking & Old debit card Flow)

5.1.1 JSON Response Formats

Given below are the JSON Response formats for Server to Server Communication.

Note:

63 | Page

Error Response XML would be shared in case the original request is not readable.

5.1.1.1 Bank to NPCI (Success & Business Rejections)

{

 "bankResponseDtl":[

 {

 "BANKID":"<Participant ID of the Bank in NACH>",

 "MandateRespDoc":"<Encrypted and Signed response XML>",

 "CheckSumVal":"<Check sum value of secure attributes>",

 "RespType":"RespXML"

 }

]

}

5.1.1.2 Bank to NPCI Error Response (Technical Rejections)

{

 "bankResponseDtl":[

 {

 "BANKID":"<Participant ID of the Bank in NACH>",

 "MandateRespDoc":"<ErrorResponse XML>",

 "RespType":"ErrorXML"

 }

]

}

6. API services

6.1 API to get Transaction Status for Banks

For the purpose of getting the transaction status of a particular transaction or group of transactions for

Banks, NPCI ONMAGS would expose a rest service which will accept list of NPCI Transaction Reference

Numbers in JSON format. The response of this API will also be in JSON Format. There will be a limitation

on the number of items posted per request. Currently the limit is set as 50.

Sample Input JSON:

{

 "npcirefmsgID":[

64 | Page

 "000f0f29dc27f00000101b09c5227457f17",

 "000f0f29dc27f00000101b09c5227457E23",

 "000f0f29dc27f00000101b09c5227453S42"

]

}

Sample Output JSON:

{

 " tranStatus ":[

 {

 "npcirefmsgID":"000f0f29dc27f00000101b09c5227457f17",

 "Accptd":"false",

 "AccptRefNo":"tranid3432kkkeke",

 "MndtId":"xxxxxxxxxxxxxxxxxxxx",

 "ReasonCode":"343",

 "ReasonDesc":"Invalid Account",

 "RejectBy":"Bank",

 "ErrorCode":"000",

 "ErrorDesc":"NA"

 },

 {

 "npcirefmsgID":"000f0f29dc27f00000101b09c5227457E23",

 "Accptd":"true",

 "AccptRefNo":"tranid352254221",

 "MndtId":"xxxxxxxxxxxxxxxxxxxx",

65 | Page

 "ReasonCode":"000",

 "ReasonDesc":"NA",

 "RejectBy":"NA",

 "ErrorCode":"000",

 "ErrorDesc":"NA"

 },

 {

 "npcirefmsgID":"000f0f29dc27f00000101b09c5227453S42",

 "Accptd":"NULL",

 "AccptRefNo":"NULL",

 "MndtId":"NULL",

 "ReasonCode":"NULL",

 "ReasonDesc":"NULL",

 "RejectBy":"NULL",

 "ErrorCode":"452",

 "ErrorDesc":"No Details available for the requested parameters. Please check the values provided"

 }

]

}

In case the details provided in the request are invalid then ErrorCde & ErrorDesc will have the

corresponding error code & description. For the valid request ErrorCode would be “000” and

“ErrorDesc” would be “NA”.API URL would be of the below format:

https://enach.npci.org.in/apiservices/getTransStatusForBanks

UAT:

https://enach.npci.org.in/apiservices/getTransStatusForBanks

66 | Page

https://103.14.161.144/8086/apiservices/getTransStatusForBanks

6.2 API for posting list of Open Transactions to Bank

●

● NPCI will post the open transaction (transaction for which response has not been received from

Bank end) to Bank at predefined interval. Bank should expose a listener for accepting the

request from NPCI and send response in the same request (Synchronous). In the request NPCI

provide either MndtId or NpciRefMsgID or Both as a input, bank ready to accept the input and

provide details as mentioned in the below format.

🡺 Request:

{

 "openMandateTrans":[

 {

 "MndtId":"xxxxxxxxxxxxxxxxxxxx",

 "NpciRefMsgID":"000f0f29dc27f00000101b09c522743SK65"

 }

]

}

For the open transaction bank needs to provide the response in the same request mentioned in the below

Note:

Bank needs to provide the API URL for accepting this request which should accept the above JSON format.

 Given below are the JSON Response formats.

🡪 Success Response

{

 "bankResponseDtl":[

 {

 "BANKID":"<Participant ID of the Bank in NACH>",

 "MandateRespDoc":"<Encrypted and Signed response XML>",

 "CheckSumVal":"<Check sum value of secure attributes>",

 "RespType":"RespXML"

 }

]

}

https://103.14.161.144/8086/apiservices/getTransStatusForBanks
https://103.14.161.144/8086/apiservices/getTransStatusForBanks

67 | Page

🡪 Error Response

Error Response XML would be shared in case the original request is not readable or in case they

didn’t receive any request for the given npcirefmsgid.

{

 "bankResponseDtl":[

 {

 "BANKID":"<Participant ID of the Bank in NACH>",

 "MandateRespDoc":"<ErrorResponse XML>",

 "RespType":"ErrorXML"

 }

]

}

6.3 HEART BEAT API

ONMAGS system will check the LIVE status of the Banks for particular interval. ONMAGS will send the

HTTPS request to banks and in the same request banks give the response (Synchronous).

The request and response structure below.

For Banks

Banks can provide “Live” as response to NPCI only if banks can process the API E-Mandate successfully at

their end. Assume if banks requires more than one service to successfully register a mandate, banks

should check the availability of all services and provide “Live”. Even if one service is not working, the

response should be provided as “Not live”.

6.3.1 Request:

The request will be in the Json format to their respective shared URL’s

{

"action":"HEART BEAT REQUEST",

"data":

{

"server_status":"ALIVE",

"current_time":"2019-11-04T09:09:09"

68 | Page

}

 }

6..3.2 Response:

{

"action": " HEART BEAT RESPONSE",

"data": {

"status": "ALIVE",

"current_time":"2019-11-04T09:09:09"

}

}

 7. Appendix

7.1 Request & Response XML Specification for Banks

Validation_Sheet_Bank

Validation sheet.xlsx

7.2 Sample XML Formats and Schemas

Request Response

Files_V9.zip

7.3 Error Codes

ErrorCode - Bank

https://drive.google.com/file/d/1-OC4DkWSUws_d0vJhd_kRTsNqtKpjlhT/view?usp=drive_web
https://drive.google.com/file/d/1t4ioAPoC6k6iYI71p_OHJWnu22IAabsB/view?usp=drive_web

69 | Page

Error codes.xlsx

7.4 Bank Reject Reason codes

Bank_Reject_reason

_codes.xls

7.5 Guidelines and design for Netbanking page, Debit Card and corporate

page

7.6 Logic for generating JSON Web Signature (JWS)

JWS_logc_Aadhaar.d

ocx

7.7 Checksum login for bank response to NPCI

7.7.1 CheckSum Logic for Mandate Validation

Generating Checksum with concatenating below fields

txnId + "|" + mndtValidation + "|" + acceptRefNo + "|" + dbtrAccType + "|" +

dbtrIfsc + "|" + reasonCode + "|" + reasonDesc + "|" + errorCode + "|" +

errorDesc + "|" + aadhaarValidation + "|" + successCode + "|" +

aadhaarReasonCode + "|" + aadhaarErrorCode + "|" + signature value

Before check sum Hashing example

ONMG7032712190068010|U/jQgxdNd4WsN

AvUYZGmvtxO7u3pweD7Wstz7GGdCMmiokzavwiJSStlmagwXE6QFwAyktVFomgAM0QHCFUu/76tiZ

5BXb0uaBxID2PXbYXzhxf28a1hQPJrztfBYoh7cMKoamLMvZOaroFoPImM1IdhIfBvObzLObSfWBy

BmufvqozdXWXU7

70 | Page

Bm0ZlntujzZZ6XrdWTVFrG15XaJDDw84CfkEjgklI1kJuC63hhWAnxRN7kTVgjdcdtmczH7GgoJNs

RF3zirTLoJjZJhO23O4J5O5pcsDEeKIUMxtUPFM4M1m0uAz7zYjRPVclDQwCKSIqdmU433GJMxyhj

G1hcmHQ==|st1X

m8hMcQoHfKuqGtWQKCGbeqyzsH1uKp/ocKOjsQ63p569uiWZdGnILKbv5f5vxdZtXFGDFrnC3r3g4

/oRp03AGJTRPCzMX5zETn4d4jwTl+/ujy3zG3idDJUfKl91LN0mN0mjnT9OabiWa3/k4UZztesWv8

vASfVjyO7G0Z5E

FlIWFjj18Xpv7oWea9J0x20EK9UbyVaMDl4JF0zNxIllo45LDH9/IIDn/UB/mZ/EUm6yHHsXzmKub

m9qyWo4NejXnkp9yy9cJ3dVlsApod410LUmbZiwyKgNfU+W9V4PwBeWvDzYu6ZCib3gbxniZsDekw

K+vn6FnhNzrXt1

VA==|DEBIT|508548|||||MNnjhDntjQahfKVLDnaech9LEGf+v2+tIGmyOs/jHce9AgtxFlgyTQE

0tDl31LeAOcmYghJbfc+e8v1ryhauw0B8l5uvva4u3GUEvDxoIbId4XnjZ30c/lUdMcdrI453mtn3

J0sEBpRhkMMWyH

V53T4yRAWcoj6+4oGKtZWw2bpS1YjZrgLjoXAvdgDpvN+rsSdIrUqWg8eFeuDkWTJZo9vOnYHt6pR

qKwSgZUqzcjrYej5fm/5NkI14GJwYB0hjQW6OUn0rchopWL9M1ImxgNAH1G64hyg9UtI8KG6eWAhE

Lm3yEKuZLqGbSm

20QK4wBMHBKlzSbPXcycCDJUOLiA==|GhgMgyEVKMHyElVD/OFScgkyhBp1AOQqLIPJN8jgHCkksb

FOJDO4TFDqHebn77H0ejPMB38SBCJqAO5JAajb3bJSiux0C5dpRrUgpPEJX5OETJlnDCHjiMaIJjb

JmzCeEMUlVTV27

YCIjGKLVfZ+2JTrKHhQWQx03rHLr5OA2aV+AYIGqDWdwQHXJuo0FeJvZZscexMutacNgANLDgJLpS

rTyqFjTrOq5ruYRhLa8ZrSfb3MW+DeyHiveHbj2lQwMsC1/1v7GqrrzZ5PyFPU0HFxoN2RAWVuEpK

UECFmWe+lbLp3u

L/DmlStUQoLEw/rF/KTX2D/A0tKJ3NKU86r3Q==|||eyJhbGciOiJSUzUxMiJ9.eyJtYW5kYXRlVm

VyaWZ5RHRscyI6eyJ0cmFuc2FjdGlvbklEIjoiU0FNUExFMDA5OVVNUk4iLCJtYW5kYXRlVmFsaWR

hdGlvbiI6IlUva

lFneGROZDRXc05BdlVZWkdtdnR4Tzd1M3B3ZUQ3V3N0ejdHR2RDTW1pb2t6YXZ3aUpTU3RsbWFnd1

hFNlFGd0F5a3RWRm9tZ0FNMFFIQ0ZVdS83NnRpWjVCWGIwdWFCeElEMlBYYllYemh4ZjI4YTFoUVB

Kcnp0ZkJZb2g3Y

01Lb2FtTE12Wk9hcm9Gb1BJbU0xSWRoSWZCdk9iekxPYlNmV0J5Qm11ZnZxb3pkWFdYVTdCbTBabG

50dWp6Wlo2WHJkV1RWRnJHMTVYYUpERHc4NENma0VqZ2tsSTFrSnVDNjNoaFdBbnhSTjdrVFZnamR

jZHRtY3pIN0dnb

0pOc1JGM3ppclRMb0pqWkpoTzIzTzRKNU81cGNzREVlS0lVTXh0VVBGTTRNMW0wdUF6N3pZalJQVm

NsRFF3Q0tTSXFkbVU0MzNHSk14eWhqRzFoY21IUT09IiwiYWFkaGFhclZhbGlkYXRpb24iOiJNTm5

qaERudGpRYWhmS1ZMRG5hZWNoOUxFR2YrdjIrdElHbXlPcy9qSGNlOUFndHhGbGd5VFFFMHREbDMx

TGVBT2NtWWdoSmJmYytlOHYxcnloYXV3MEI4bDV1dnZhNHUzR1VFdkR4b0liSWQ0WG5qWjMwYy9sV

WRNY2RySTQ1M210bjNKMHNFQnBSaGtNTVd5SFY1M1Q0eVJBV2NvajYrNG9HS3RaV3cyYnBTMVlqWn

JnTGpvWEF2ZGdEcHZOK3JzU2RJclVxV2c4ZUZldURrV1RKWm85dk9uWUh0NnBScUt3U2daVXF6Y2p

yWWVqNWZtLzVOa0kxNEdKd1lCMGhqUVc2T1VuMHJjaG9wV0w5TTFJbXhnTkFIMUc2NGh5ZzlVdEk4

S0c2ZVdBaEVMbTN5RUt1WkxxR2JTbTIwUUs0d0JNSEJLbHpTYlBYY3ljQ0RKVU9MaUE9PSIsIm1hb

mRhdGVSZXNwb25zZUR0bCI6eyJhY2NwdFJlZk5vIjoic3QxWG04aE1jUW9IZkt1cUd0V1FLQ0diZX

F5enNIMXVLcC9vY0tPanNRNjNwNTY5dWlXWmRHbklMS2J2NWY1dnhkWnRYRkdERnJuQzNyM2c0L29

ScDAzQUdKVFJQQ3pNWDV6RVRuNGQ0andUbCsvdWp5M3pHM2lkREpVZktsOTFMTjBtTjBtam5UOU9h

YmlXYTMvazRVWnp0ZXNXdjh2QVNmVmp5TzdHMFo1RUZsSVdGamoxOFhwdjdvV2VhOUoweDIwRUs5V

WJ5VmFNRGw0SkYwek54SWxsbzQ1TERIOS9JSURuL1VCL21aL0VVbTZ5SEhzWHptS3VibTlxeVdvNE

5lalhua3A5eXk5Y0ozZFZsc0Fwb2Q0MTBMVW1iWml3eUtnTmZVK1c5VjRQd0JlV3ZEell1NlpDaWI

zZ2J4bmlac0Rla3dLK3ZuNkZuaE56clh0MVZBPT0iLCJkYnRySWZzYyI6IjUwODU0OCIsImRidHJB

Y2N0VHlwZSI6IkRFQklUIn0sImFhZGhhYXJWZXJpZnlEdGwiOnsic3VjY2Vzc0NvZGUiOiJHaGdNZ

3lFVktNSHlFbFZEL09GU2Nna3loQnAxQU9RcUxJUEpOOGpnSENra3NiRk9KRE80VEZEcUhlYm43N0

gwZWpQTUIzOFNCQ0pxQU81SkFhamIzYkpTaXV4MEM1ZHBSclVncFBFSlg1T0VUSmxuRENIamlNYUl

KamJKbXpDZUVNVWxWVFYyN1lDSWpHS0xWZlorMkpUcktIaFFXUXgwM3JITHI1T0EyYVYrQVlJR3FE

V2R3UUhYSnVvMEZlSnZaWnNjZXhNdXRhY05nQU5MRGdKTHBTclR5cUZqVHJPcTVydVlSaExhOFpyU

2ZiM01XK0RleUhpdmVIYmoybFF3TXNDMS8xdjdHcXJyelo1UHlGUFUwSEZ4b04yUkFXVnVFcEtVRU

NGbVdlK2xiTHAzdUwvRG1sU3RVUW9MRXcvckYvS1RYMkQvQTB0S0ozTktVODZyM1E9PSJ9fX0.hgB

qdsH9qzksjuzJJpf9MBkV--

71 | Page

xuPEMniBmtjk5P6qlWGuck5TKWh6LnUVnn8O1oTfDFIwNQXzFaVRJov24DVaWdpxgL90RHYQH9Ww2

5ByydKv5xBj37cN0mjPBDxqF0VGdYAi717n0wJNQC-

8v14LZ2txPzfKhG9jXASToPYcdUS0wL2c4gYjkIxKn_aD1lYfoFMWWnYwgU4U7QAlDfr9AHhhPQcD

XK-CSMXy2GJOUwDmbUtpVzYyi3-

t3xtt4WFfub6HLSt_5cacNbrCrcDCyHDnIJ60G32NKngXV7MhYC-

5m2BQOQQbPLHCoHbqgmMwN4Dpb2bZTuF4J0ISVpBQ

After checksum hashing SHA 256

654940560c978580c88c0f96f805fff653741be7cee04feba3cd92377d1533a0

Encrypting the checksum with NPCI public key

hBbotAWO67zN/RdYY++PFybVFoBBo8o3phhfrWx6AnFv3/CuAVp73o/X0awterQVp42N+JblY0ypr

NNLk1sqGgQRZZ+C7KBeyG8BBgZOA0X5wveBhDQHUs/Kv8zQw1MLjOkmrdqzWlKrgfCw4AC7tsE6+T

jyp5cnZvfMp9aM43t9rOSGvzr7ivuSPzqYB8agJkAR0WkDQ3Sd67BG40vvzOVyxRVli1ky4bkRmMZ

Z+YlcEVGoynR4MlisxDrg/rcC3FPI3LpQZJ/bz+zaA1O4dFduChLn9d82vZiBoJ3tgupSw0tsSkHD

1yisAa4zyki3OTD4P22JAt2SIifgQc1Jjg==

Final Response with signature and checksum:
{

 "mandateVerifyDtls": {

 "transactionID": "ONMG7032712190068010",

 "mandateValidation":

"U/jQgxdNd4WsNAvUYZGmvtxO7u3pweD7Wstz7GGdCMmiokzavwiJSStlmagwXE6QFwAyktVFomgAM0QHCFUu/76tiZ5BXb0u

aBxID2PXbYXzhxf28a1hQPJrztfBYoh7cMKoamLMvZOaroFoPImM1IdhIfBvObzLObSfWByBmufvqozdXWXU7Bm0ZlntujzZZ

6XrdWTVFrG15XaJDDw84CfkEjgklI1kJuC63hhWAnxRN7kTVgjdcdtmczH7GgoJNsRF3zirTLoJjZJhO23O4J5O5pcsDEeKIU

MxtUPFM4M1m0uAz7zYjRPVclDQwCKSIqdmU433GJMxyhjG1hcmHQ==",

 "aadhaarValidation":

"MNnjhDntjQahfKVLDnaech9LEGf+v2+tIGmyOs/jHce9AgtxFlgyTQE0tDl31LeAOcmYghJbfc+e8v1ryhauw0B8l5uvva4u

3GUEvDxoIbId4XnjZ30c/lUdMcdrI453mtn3J0sEBpRhkMMWyHV53T4yRAWcoj6+4oGKtZWw2bpS1YjZrgLjoXAvdgDpvN+rs

SdIrUqWg8eFeuDkWTJZo9vOnYHt6pRqKwSgZUqzcjrYej5fm/5NkI14GJwYB0hjQW6OUn0rchopWL9M1ImxgNAH1G64hyg9Ut

I8KG6eWAhELm3yEKuZLqGbSm20QK4wBMHBKlzSbPXcycCDJUOLiA==",

 "mandateResponseDtl": {

 "accptRefNo":

"st1Xm8hMcQoHfKuqGtWQKCGbeqyzsH1uKp/ocKOjsQ63p569uiWZdGnILKbv5f5vxdZtXFGDFrnC3r3g4/oRp03AGJTRPCzM

X5zETn4d4jwTl+/ujy3zG3idDJUfKl91LN0mN0mjnT9OabiWa3/k4UZztesWv8vASfVjyO7G0Z5EFlIWFjj18Xpv7oWea9J0x

20EK9UbyVaMDl4JF0zNxIllo45LDH9/IIDn/UB/mZ/EUm6yHHsXzmKubm9qyWo4NejXnkp9yy9cJ3dVlsApod410LUmbZiwyK

gNfU+W9V4PwBeWvDzYu6ZCib3gbxniZsDekwK+vn6FnhNzrXt1VA==",

 "dbtrIfsc": "508548",

 "dbtrAcctType": "DEBIT"

 },

 "aadhaarVerifyDtl": {

 "successCode":

"GhgMgyEVKMHyElVD/OFScgkyhBp1AOQqLIPJN8jgHCkksbFOJDO4TFDqHebn77H0ejPMB38SBCJqAO5JAajb3bJSiux0C5dp

RrUgpPEJX5OETJlnDCHjiMaIJjbJmzCeEMUlVTV27YCIjGKLVfZ+2JTrKHhQWQx03rHLr5OA2aV+AYIGqDWdwQHXJuo0FeJvZ

ZscexMutacNgANLDgJLpSrTyqFjTrOq5ruYRhLa8ZrSfb3MW+DeyHiveHbj2lQwMsC1/1v7GqrrzZ5PyFPU0HFxoN2RAWVuEp

KUECFmWe+lbLp3uL/DmlStUQoLEw/rF/KTX2D/A0tKJ3NKU86r3Q=="

 }

 },

 "checkSumVal":

"hBbotAWO67zN/RdYY++PFybVFoBBo8o3phhfrWx6AnFv3/CuAVp73o/X0awterQVp42N+JblY0yprNNLk1sqGgQRZZ+C7KBe

yG8BBgZOA0X5wveBhDQHUs/Kv8zQw1MLjOkmrdqzWlKrgfCw4AC7tsE6+Tjyp5cnZvfMp9aM43t9rOSGvzr7ivuSPzqYB8agJ

kAR0WkDQ3Sd67BG40vvzOVyxRVli1ky4bkRmMZZ+YlcEVGoynR4MlisxDrg/rcC3FPI3LpQZJ/bz+zaA1O4dFduChLn9d82vZ

iBoJ3tgupSw0tsSkHD1yisAa4zyki3OTD4P22JAt2SIifgQc1Jjg==",

 "signature":

"eyJhbGciOiJSUzUxMiJ9.eyJtYW5kYXRlVmVyaWZ5RHRscyI6eyJ0cmFuc2FjdGlvbklEIjoiU0FNUExFMDA5OVVNUk4iLCJ

72 | Page

tYW5kYXRlVmFsaWRhdGlvbiI6IlUvalFneGROZDRXc05BdlVZWkdtdnR4Tzd1M3B3ZUQ3V3N0ejdHR2RDTW1pb2t6YXZ3aUpT

U3RsbWFnd1hFNlFGd0F5a3RWRm9tZ0FNMFFIQ0ZVdS83NnRpWjVCWGIwdWFCeElEMlBYYllYemh4ZjI4YTFoUVBKcnp0ZkJZb

2g3Y01Lb2FtTE12Wk9hcm9Gb1BJbU0xSWRoSWZCdk9iekxPYlNmV0J5Qm11ZnZxb3pkWFdYVTdCbTBabG50dWp6Wlo2WHJkV1

RWRnJHMTVYYUpERHc4NENma0VqZ2tsSTFrSnVDNjNoaFdBbnhSTjdrVFZnamRjZHRtY3pIN0dnb0pOc1JGM3ppclRMb0pqWkp

oTzIzTzRKNU81cGNzREVlS0lVTXh0VVBGTTRNMW0wdUF6N3pZalJQVmNsRFF3Q0tTSXFkbVU0MzNHSk14eWhqRzFoY21IUT09

IiwiYWFkaGFhclZhbGlkYXRpb24iOiJNTm5qaERudGpRYWhmS1ZMRG5hZWNoOUxFR2YrdjIrdElHbXlPcy9qSGNlOUFndHhGb

Gd5VFFFMHREbDMxTGVBT2NtWWdoSmJmYytlOHYxcnloYXV3MEI4bDV1dnZhNHUzR1VFdkR4b0liSWQ0WG5qWjMwYy9sVWRNY2

RySTQ1M210bjNKMHNFQnBSaGtNTVd5SFY1M1Q0eVJBV2NvajYrNG9HS3RaV3cyYnBTMVlqWnJnTGpvWEF2ZGdEcHZOK3JzU2R

JclVxV2c4ZUZldURrV1RKWm85dk9uWUh0NnBScUt3U2daVXF6Y2pyWWVqNWZtLzVOa0kxNEdKd1lCMGhqUVc2T1VuMHJjaG9w

V0w5TTFJbXhnTkFIMUc2NGh5ZzlVdEk4S0c2ZVdBaEVMbTN5RUt1WkxxR2JTbTIwUUs0d0JNSEJLbHpTYlBYY3ljQ0RKVU9Ma

UE9PSIsIm1hbmRhdGVSZXNwb25zZUR0bCI6eyJhY2NwdFJlZk5vIjoic3QxWG04aE1jUW9IZkt1cUd0V1FLQ0diZXF5enNIMX

VLcC9vY0tPanNRNjNwNTY5dWlXWmRHbklMS2J2NWY1dnhkWnRYRkdERnJuQzNyM2c0L29ScDAzQUdKVFJQQ3pNWDV6RVRuNGQ

0andUbCsvdWp5M3pHM2lkREpVZktsOTFMTjBtTjBtam5UOU9hYmlXYTMvazRVWnp0ZXNXdjh2QVNmVmp5TzdHMFo1RUZsSVdG

amoxOFhwdjdvV2VhOUoweDIwRUs5VWJ5VmFNRGw0SkYwek54SWxsbzQ1TERIOS9JSURuL1VCL21aL0VVbTZ5SEhzWHptS3Vib

TlxeVdvNE5lalhua3A5eXk5Y0ozZFZsc0Fwb2Q0MTBMVW1iWml3eUtnTmZVK1c5VjRQd0JlV3ZEell1NlpDaWIzZ2J4bmlac0

Rla3dLK3ZuNkZuaE56clh0MVZBPT0iLCJkYnRySWZzYyI6IjUwODU0OCIsImRidHJBY2N0VHlwZSI6IkRFQklUIn0sImFhZGh

hYXJWZXJpZnlEdGwiOnsic3VjY2Vzc0NvZGUiOiJHaGdNZ3lFVktNSHlFbFZEL09GU2Nna3loQnAxQU9RcUxJUEpOOGpnSENr

a3NiRk9KRE80VEZEcUhlYm43N0gwZWpQTUIzOFNCQ0pxQU81SkFhamIzYkpTaXV4MEM1ZHBSclVncFBFSlg1T0VUSmxuRENIa

mlNYUlKamJKbXpDZUVNVWxWVFYyN1lDSWpHS0xWZlorMkpUcktIaFFXUXgwM3JITHI1T0EyYVYrQVlJR3FEV2R3UUhYSnVvME

ZlSnZaWnNjZXhNdXRhY05nQU5MRGdKTHBTclR5cUZqVHJPcTVydVlSaExhOFpyU2ZiM01XK0RleUhpdmVIYmoybFF3TXNDMS8

xdjdHcXJyelo1UHlGUFUwSEZ4b04yUkFXVnVFcEtVRUNGbVdlK2xiTHAzdUwvRG1sU3RVUW9MRXcvckYvS1RYMkQvQTB0S0oz

TktVODZyM1E9PSJ9fX0.hgBqdsH9qzksjuzJJpf9MBkV--

xuPEMniBmtjk5P6qlWGuck5TKWh6LnUVnn8O1oTfDFIwNQXzFaVRJov24DVaWdpxgL90RHYQH9Ww25ByydKv5xBj37cN0mjPB

DxqF0VGdYAi717n0wJNQC-

8v14LZ2txPzfKhG9jXASToPYcdUS0wL2c4gYjkIxKn_aD1lYfoFMWWnYwgU4U7QAlDfr9AHhhPQcDXK-

CSMXy2GJOUwDmbUtpVzYyi3-t3xtt4WFfub6HLSt_5cacNbrCrcDCyHDnIJ60G32NKngXV7MhYC-

5m2BQOQQbPLHCoHbqgmMwN4Dpb2bZTuF4J0ISVpBQ"

}

7.7.2 CheckSum Logic for OTP Validation

Generating Checksum with concatenating below fields

txnId + "|" + verifyStatus + "|" + errorCode + "|" + reasonCode + "|" + signature

value

Before check sum Hashing example

SAMPLE0099UMRN|ea7HBMRsu32GWkZv8sLTCD0JvfGXz7bc975yjuQfy2jUmM8cOfNiSCN2x31uyS

tYTdfAC4kpEFDAIW0v0ensqA1TYQE7r8MOJ+UG0M+eexz3/OBaUFQhHnBBbln+YsilrGKIkZVeaf1

PC/5X7yTjOlI5WQe9kyPy2/np4Cgp+lMW7ggABQ3PN8xb18Y6s0eIFz+0rTgBpqZyKhCgHUGpiTcl

DNWb1a6OIEn0q2E1jrAnqwGomFHYV1KIiGWA2pa6uLVVEnVQts5c6M/b5vPQHJBOdnkWCPtNUIl3f

0fMPt/K1UTeuG6WEg3s/tPsTk1bTahnex6hYZ38ltqLpHBpcg==|bgduA1UdDuSJgHLC3E08jwxP2

BvFsCcE0PaiXooPn2y1jwj/ANHTfq0/aA1gNJ/+uhZW9/+nnBNCBna/NdoD5h4ctulSPXPUG/DrQY

y6jEmTYhHr+Lac2Sg/ZIZv3b2JN1Yg8Epnk8DhkuW1s4r9R0toQuktWCGb7646Mt6chKDJHL4V/iw

IHisJlOIQmZ9UF2ao5Hw1ftBbr8dx8HsbGJFaOZrmRmNX83P1hWV68Unf3tDyHpkQKRFoXfKbjhP5

emZxW6DSdm1BfMsVi22b1BCrpyxfHR/jMEa02LTJSsJLtKj37XxXn5x9fm5yJPX54Q+ETH0QasPuo

ypj45Gv6Q==||eyJhbGciOiJSUzUxMiJ9.eyJvdHBWZXJpZnlJbmZvIjp7InRyYW5zYWN0aW9uSUQ

iOiJTQU1QTEUwMDk5VU1STiIsIm9wdFZlcmlmeVN0YXR1cyI6ImVhN0hCTVJzdTMyR1drWnY4c0xU

Q0QwSnZmR1h6N2JjOTc1eWp1UWZ5MmpVbU04Y09mTmlTQ04yeDMxdXlTdFlUZGZBQzRrcEVGREFJV

zB2MGVuc3FBMVRZUUU3cjhNT0orVUcwTStlZXh6My9PQmFVRlFoSG5CQmJsbitZc2lsckdLSWtaVm

VhZjFQQy81WDd5VGpPbEk1V1FlOWt5UHkyL25wNENncCtsTVc3Z2dBQlEzUE44eGIxOFk2czBlSUZ

6KzByVGdCcHFaeUtoQ2dIVUdwaVRjbEROV2IxYTZPSUVuMHEyRTFqckFucXdHb21GSFlWMUtJaUdX

QTJwYTZ1TFZWRW5WUXRzNWM2TS9iNXZQUUhKQk9kbmtXQ1B0TlVJbDNmMGZNUHQvSzFVVGV1RzZXR

Wczcy90UHNUazFiVGFobmV4NmhZWjM4bHRxTHBIQnBjZz09IiwiZXJyb3JDb2RlIjoiYmdkdUExVW

REdVNKZ0hMQzNFMDhqd3hQMkJ2RnNDY0UwUGFpWG9vUG4yeTFqd2ovQU5IVGZxMC9hQTFnTkovK3V

73 | Page

oWlc5LytubkJOQ0JuYS9OZG9ENWg0Y3R1bFNQWFBVRy9EclFZeTZqRW1UWWhIcitMYWMyU2cvWkla

djNiMkpOMVlnOEVwbms4RGhrdVcxczRyOVIwdG9RdWt0V0NHYjc2NDZNdDZjaEtESkhMNFYvaXdJS

GlzSmxPSVFtWjlVRjJhbzVIdzFmdEJicjhkeDhIc2JHSkZhT1pybVJtTlg4M1AxaFdWNjhVbmYzdE

R5SHBrUUtSRm9YZktiamhQNWVtWnhXNkRTZG0xQmZNc1ZpMjJiMUJDcnB5eGZIUi9qTUVhMDJMVEp

Tc0pMdEtqMzdYeFhuNXg5Zm01eUpQWDU0UStFVEgwUWFzUHVveXBqNDVHdjZRPT0ifX0.ltmq6Eeo

yBJ9C05cKl73-t7qgQLKkjHYqrOA6EaK82Y3tqqt1TuOw_hkB6K-

c78eVWzef6oohveQfMr4cPGwqT0LJAs7tnhmDjH2z1iCdLZI2SgmUffZ5s2POe0KgJvwrIPOkvnEU

0eYexdatYhFGskola4uycRQJ19UjLtj3Bxa_Rlh_EmDD4Nbol_XslcTJ_NbKS1wvFeVrqG3gFX6Zp

RHn2MxSsVA8lTOadP3Zk-jKOi15n500ZoXVwvCSv2Qp4CPLr6gphRWg8T_JX-

7ZBirGb8ZrZ4Ntn8FSdkBvQrVbKGfy7YVvg_jmG34XoO3ozhhToLZLQYo-5eHeXIydw

After checksum hashing SHA 256

654940560c978580c88c0f96f805fff653741be7cee04feba3cd92377d1533a0

Encrypting the checksum with NPCI public key

TP1stsqIpWnRdr+TTE3+b1dQo5pUVUV/mQMPEFRljlcpFPGYEkFpxFAXEpmvslFR5+9segYY4771w

nhDAAneepYmpQ/+yrABfy3fvnLc5LTAVrZcnIFZa6qjIwOIh1eiQm2mJ75rxizn+uWxEj8D9B16Gr

/3q0YjI8bkNQXN5Aeh2ldZfKECxZ6liBXRJEizZsXXd01lKxkyyx/3nFozZjpmoIq44N3Xk7xwJGG

Gvbg/z5jT773MRw57NIU7vXGkmmW6gFtMX/nnZuxCEnsjee0hzIvKuxMNwMslt9XSh5GvcU6FtFci

Du8x4mNL5o+7EIfI3fSNEWXYv7xlPsoxDQ==

Final Response with signature and checksum:
{

 "otpVerifyInfo": {

 "transactionID": "ONMG7032712190068010",

 "optVerifyStatus":

"ea7HBMRsu32GWkZv8sLTCD0JvfGXz7bc975yjuQfy2jUmM8cOfNiSCN2x31uyStYTdfAC4kpEFDAIW0v0ensq

A1TYQE7r8MOJ+UG0M+eexz3/OBaUFQhHnBBbln+YsilrGKIkZVeaf1PC/5X7yTjOlI5WQe9kyPy2/np4Cgp+lM

W7ggABQ3PN8xb18Y6s0eIFz+0rTgBpqZyKhCgHUGpiTclDNWb1a6OIEn0q2E1jrAnqwGomFHYV1KIiGWA2pa6u

LVVEnVQts5c6M/b5vPQHJBOdnkWCPtNUIl3f0fMPt/K1UTeuG6WEg3s/tPsTk1bTahnex6hYZ38ltqLpHBpcg=

=",

 "errorCode":

"bgduA1UdDuSJgHLC3E08jwxP2BvFsCcE0PaiXooPn2y1jwj/ANHTfq0/aA1gNJ/+uhZW9/+nnBNCBna/NdoD5

h4ctulSPXPUG/DrQYy6jEmTYhHr+Lac2Sg/ZIZv3b2JN1Yg8Epnk8DhkuW1s4r9R0toQuktWCGb7646Mt6chKD

JHL4V/iwIHisJlOIQmZ9UF2ao5Hw1ftBbr8dx8HsbGJFaOZrmRmNX83P1hWV68Unf3tDyHpkQKRFoXfKbjhP5e

mZxW6DSdm1BfMsVi22b1BCrpyxfHR/jMEa02LTJSsJLtKj37XxXn5x9fm5yJPX54Q+ETH0QasPuoypj45Gv6Q=

="

 },

 "checkSumVal":

"TP1stsqIpWnRdr+TTE3+b1dQo5pUVUV/mQMPEFRljlcpFPGYEkFpxFAXEpmvslFR5+9segYY4771wnhDAAnee

pYmpQ/+yrABfy3fvnLc5LTAVrZcnIFZa6qjIwOIh1eiQm2mJ75rxizn+uWxEj8D9B16Gr/3q0YjI8bkNQXN5Ae

h2ldZfKECxZ6liBXRJEizZsXXd01lKxkyyx/3nFozZjpmoIq44N3Xk7xwJGGGvbg/z5jT773MRw57NIU7vXGkm

mW6gFtMX/nnZuxCEnsjee0hzIvKuxMNwMslt9XSh5GvcU6FtFciDu8x4mNL5o+7EIfI3fSNEWXYv7xlPsoxDQ=

=",

 "signature":

"eyJhbGciOiJSUzUxMiJ9.eyJvdHBWZXJpZnlJbmZvIjp7InRyYW5zYWN0aW9uSUQiOiJTQU1QTEUwMDk5VU1S

TiIsIm9wdFZlcmlmeVN0YXR1cyI6ImVhN0hCTVJzdTMyR1drWnY4c0xUQ0QwSnZmR1h6N2JjOTc1eWp1UWZ5Mm

pVbU04Y09mTmlTQ04yeDMxdXlTdFlUZGZBQzRrcEVGREFJVzB2MGVuc3FBMVRZUUU3cjhNT0orVUcwTStlZXh6

My9PQmFVRlFoSG5CQmJsbitZc2lsckdLSWtaVmVhZjFQQy81WDd5VGpPbEk1V1FlOWt5UHkyL25wNENncCtsTV

c3Z2dBQlEzUE44eGIxOFk2czBlSUZ6KzByVGdCcHFaeUtoQ2dIVUdwaVRjbEROV2IxYTZPSUVuMHEyRTFqckFu

74 | Page

cXdHb21GSFlWMUtJaUdXQTJwYTZ1TFZWRW5WUXRzNWM2TS9iNXZQUUhKQk9kbmtXQ1B0TlVJbDNmMGZNUHQvSz

FVVGV1RzZXRWczcy90UHNUazFiVGFobmV4NmhZWjM4bHRxTHBIQnBjZz09IiwiZXJyb3JDb2RlIjoiYmdkdUEx

VWREdVNKZ0hMQzNFMDhqd3hQMkJ2RnNDY0UwUGFpWG9vUG4yeTFqd2ovQU5IVGZxMC9hQTFnTkovK3VoWlc5Ly

tubkJOQ0JuYS9OZG9ENWg0Y3R1bFNQWFBVRy9EclFZeTZqRW1UWWhIcitMYWMyU2cvWkladjNiMkpOMVlnOEVw

bms4RGhrdVcxczRyOVIwdG9RdWt0V0NHYjc2NDZNdDZjaEtESkhMNFYvaXdJSGlzSmxPSVFtWjlVRjJhbzVIdz

FmdEJicjhkeDhIc2JHSkZhT1pybVJtTlg4M1AxaFdWNjhVbmYzdER5SHBrUUtSRm9YZktiamhQNWVtWnhXNkRT

ZG0xQmZNc1ZpMjJiMUJDcnB5eGZIUi9qTUVhMDJMVEpTc0pMdEtqMzdYeFhuNXg5Zm01eUpQWDU0UStFVEgwUW

FzUHVveXBqNDVHdjZRPT0ifX0.ltmq6EeoyBJ9C05cKl73-t7qgQLKkjHYqrOA6EaK82Y3tqqt1TuOw_hkB6K-

c78eVWzef6oohveQfMr4cPGwqT0LJAs7tnhmDjH2z1iCdLZI2SgmUffZ5s2POe0KgJvwrIPOkvnEU0eYexdatY

hFGskola4uycRQJ19UjLtj3Bxa_Rlh_EmDD4Nbol_XslcTJ_NbKS1wvFeVrqG3gFX6ZpRHn2MxSsVA8lTOadP3

Zk-jKOi15n500ZoXVwvCSv2Qp4CPLr6gphRWg8T_JX-

7ZBirGb8ZrZ4Ntn8FSdkBvQrVbKGfy7YVvg_jmG34XoO3ozhhToLZLQYo-5eHeXIydw"

}

