NATIONAL PAYMENTS CORPORATION OF INDIA

NPCI Mandate Approval Gateway Service

Bank Specification Document

Version 4.2.3

DOCUMENT RELEASE NOTICE

Document Details

Specification for Banks

Name Version No. | Date Description

Bank Specification Document Draft 24-02-2017 Provides technical & operation
specification for Banks to develop
compatible application at their end
for communicating with the
Mandate Authorization application

NPCI Mandate Authorization | 1.0 01-03-2017 Updated for Debit Card

Specification for Banks

NPCl Mandate Authorization | 1.1 22-03-2017 Covered the specification for

Specification for Banks Signing, Check Sum & Encryption.
XML Specification, XSD & XML
Samples attached as zip

NPClI Mandate Authorization | 2.0 27-03-2017 Updated for Error Scenarios, HTTP

Specification for Banks Status codes.

NPClI Mandate Authorization | 3.0 26-05-2017 API to get live destination banks for

Specification for Banks e-mandate
Separate URL’s for Net banking &
Debit Card
Corporate mapping to the
destination banks

NPCI Mandate Authorization | 3.1 08-06-2017 Updated the process flow to

include bank selection in the

merchant page.

2 | Page

Specification for Banks

NPCI Mandate Authorization | 3.2 24-06-2017 Addition of Dbtr tag in Request
Specification for Banks XML.
Changes in Error Response XML’s,
Error Codes & Failure Scenarios (In
Appendix)
NPClI Mandate Authorization | 3.3 03-Jul-2017 Error Codes & Failure Scenarios
Specification for Banks Sheet Updated.
Encryption of Debtor field instead
of Creditor. Changes in Server to
Server communication
specification.
NPCl Mandate Authorization | 3.4 14-Jul-2017 Changes in Request & Response
Specification for Banks XML formats and Error XML
format.
NPClI Mandate Authorization | 3.5 07-Aug-2017 Handling of Timeout Scenario
Specification for Banks Added
NPClI Mandate Authorization | 3.5 20-Dec-2017 Encryption methodology updated
Specification for Banks
Updates to Offline API’s
Error Codes Updated
NPClI Mandate Authorization | 3.6 18-Sep-2018 AuthMode added as additional
Specification for Banks Parameter from Merchant. Flow
changes based on this parameter.
NPCl Mandate Authorization | 3.7 15-APR-2019 Change in API “Posting list of Open

Transactions to Bank”

3 | Page

Specification for Banks

NPClI Mandate Authorization | 3.8 17-May-2019 Changes in Error XML Structure
Specification for Banks from Bank to NPCI and from NPCI
to Merchant (Appendix 9.1)
Changes in lengths and data types
of XML elements in Merchant
Request. Changes in Error
Response from Bank
Change in live bank list api
NPClI Mandate Authorization | 4.0 12-DEC-2019 Changes in Merchant request XML,
Specification for Banks Bank request XML & Merchant
response XML.
Encryption of additional fields
Encryption of Request XML and
Response XML
Additional parameter in the form
post for Merchant
NPClI Mandate Authorization | 4.1 29-JUL-2020 Introduction of New Debit Card
Specification for Banks Flow
BANKID & AUTHMODE mandatory
in merchant request
NPCI Mandate Authorization | 4.2 29-DEC-2021 Introduction of Aadhaar flow
Specification for Banks
NPClI Mandate Authorization | 4.2.1 29-MAR-2022 Added Signature and Checksum in
Specification for Banks bank response
NPClI Mandate Authorization | 4.2.2 25-MAY-2022 Signature, checksum logic added

Aadhaar Mandate Validation,
Aadhaar OTP validation Checksum
fields added.

4 | Page

Request Parameter
aadhaarNumber updated as
aadhaarNo

Aadhaar response corrected

Specification for Banks

NPClI Mandate Authorization | 4.2.3 03-Jun-2022 aadhaarAuthDtls attiribute
Specification for Banks corrected in ResendOTP Aadhaar
Request
Resend OTP Request format
added for Direct Debit card flow
NPCI Mandate Authorization | 4.2.4 23-Aug-2022 Debit Card failure reattempt
Specification for Banks screenshot added for Direct Debit
card flow
NPClI Mandate Authorization | 4.3 25-10-2022 Introduction to Amend, Cancel,
Specification for Banks Suspend and Revoke,Custom
cancel
NPCI Mandate Authorization | 4.4 30-05-2023 Introduction of PAN and Cust ID

authentication mode

This document and any revised pages are subject to document control. Please keep them up-to-date using

the release notices from the distributor of the document.

5 | Page

Table of Contents

1. INTRODUCTION
1.1 ABBREVIATION
2. INTERFACE SPECIFICATION DETAILS FOR MANDATE APPROVAL

2.1 REGISTRATION WITH NPCI

2.2 MANDATE APPROVAL FUNCTION FLOW (FOR NET BANKING & DEBIT CARD

AUTHENTICATION MODES)

2.2.1 END TO END PROCESS FLOW (FOR NET BANKING & DEBIT CARD
AUTHENTICATION MODES)

10
10

10

11

2.3 MANDATE APPROVAL FUNCTION FLOW(AMEND, CANCEL, SUSPEND, REVOKE)

12
24 INTERFACE LAYER
3. SPECIFICATION FORMAT FOR REQUEST & RESPONSE
4. TECHNICAL INTEGRATION SPECIFICATION
41 FORWARD FLOW SPECIFICATION FROM NPCI TO BANK
4.1.1 ENCODING OF REQUEST XML FOR BANKS
42 BANKSITE INTEGRATION REQUIREMENTS
421 NET BANKING FLOW
422 NEW DEBIT CARD FLOW
4.2.2.1 REQUEST INFORMATION TO BANK
423 AADHAAR BASED AUTHENTICATION FLOW
4.2.4 PAN/CUST ID AUTHENTICATION MODE
43 SIGNING AND ENCRYPTION PROCESS
44 ENCODING GUIDELINES

5. RESPONSE THROUGH OFFLINE SERVER TO SERVER COMMUNICATION

5.1 HANDLING OF TIME OUT / NOT REACHABLE SCENARIOS
5.1.1 JSON RESPONSE FORMATS

5.1.1.1 BANK TO NPCI (SUCCESS & BUSINESS REJECTIONS)

5.1.1.2 BANK TO NPCI ERROR RESPONSE (TECHNICAL REJECTIONS)
6. API SERVICES

6.1 API TO GET TRANSACTION STATUS FOR BANKS

6 | Page

13
14
15
15
19
20
20
26
27
33
47
59
60
60
60
62
63
63
63
63

6.2 APl FOR POSTING LIST OF OPEN TRANSACTIONS TO BANK
[l Request:
Given below are the JSON Response formats.
Success Response
Error Response
6.3 HEART BEAT API
6.3.1 Request:

6..3.2 Response:
7. APPENDIX
7.1 REQUEST & RESPONSE XML SPECIFICATION FOR BANKS
7.2 SAMPLE XML FORMATS AND SCHEMAS
7.3 ERROR CODES
7.4 BANK REJECT REASON CODES

7.5 GUIDELINES AND DESIGN FOR NETBANKING PAGE, DEBIT CARD AND
CORPORATE PAGE

7.6 LOGIC FOR GENERATING JSON WEB SIGNATURE (JWS)
7.7 CHECKSUM LOGIN FOR BANK RESPONSE TO NPCI

7.7.1 CheckSum Logic for Mandate Validation
Generating Checksum with concatenating below fields
Before check sum Hashing example

After checksum hashing SHA 256

Encrypting the checksum with NPCI public key

Final Response with signature and checksum:

7.7.2 CheckSum Logic for OTP Validation

Generating Checksum with concatenating below fields
Before check sum Hashing example

After checksum hashing SHA 256

7 | Page

66

66

66

66

67

67

67

68
68
68
68
68
69

69
69
69

69

69

69

71

71

71

72

72

72

73

Encrypting the checksum with NPCI public key

Final Response with signature and checksum:

8 | Page

73

73

1. Introduction

This document details the requirement for destination banks to develop the required interface
for interacting with the Mandate Authorization gateway service.

The file formats for request & response are covered in this document.

1.1 Abbreviation

The below abbreviations are used in the document.

NPCI National Payments Corporation of India
ONMAGS Online Mandate Approval Gateway Service
UIDAI Unique Identification Authority of India

9 | Page

2. Interface specification details for Mandate Approval

2.1 Registration with NPCI

The destination banks who want to leverage the service need to be registered with NPCl and get
certified.

2.2 Mandate Approval function flow (for Net Banking & Debit Card
authentication modes)

The mandate approval flow is initiated from the Merchant end, request validated at NPCI end and
forwarded to the Bank for authorization. The confirmation provided back by the Destination Bank is
relayed back to the merchant.

Mandates created through ONMAGS will be auto registered in MMS. The overall flow and the integration
between ONMAGS and MMS systems is explained by the below diagram.

e

archamt [Customar)

Spanzar Bank

] AP e
ard’ff— _l‘nl.‘fll.ltit LKIRN Ganaratios

_,' Mandate API Request with

UKIRN for Liva banks in ress floss

b

QONPMAGS
r UBIEN Generation
i |
o r
Mandate 4P| Respanse
wiith UMEN

-
1
4
FMlandate Insertian
in M5 DB as Aurto
Approvad Mandata

XML INW a3 per
Currant farmat

The process flow is mentioned in the next section.

Note:

Mandata AP Rasporaa with
tustomer authenkication details

Responss from MBS

A EML RES a= pesr current
i | format |Tamparary flow e
% perbank chaice)

r Amend/Cancel with

k | Moimal XMLAGUI Flow
_

From version 4.1 BankID & AuthMode are mandatory in the merchant request

10 | Page

221 End to End Process Flow (for Net Banking & Debit Card
Authentication Modes)

The below diagram illustrates the functional flow of mandate authorization when Bank ID &
Authentication Mode are passed from Merchant. This will be the default flow from version 4.1.

= BANK
Customer 2 ' ' '
Logs into Customer enters o
Merchant . mandat_e Proceed lfor !?-ank Destination
Site information Authorization Bank
including Bank passing Mandate

o Login Using Met

banking [Debit

Card Credentials

[Name & Information
Authentication [Auto Redirect)
Mode

| l q“meed far NPCI Display Mandate

- O GEDEMW::J::ZSIHE Information
Customer Information in l
the Request
Approve [Reject
¢. oﬁﬁeiue Acceptance / | Mandate
Display | Rejection Details N
Acceptance / l
Rejection Details l .
to Customer | 4@ Redirect to NPCI
Send Acceptance / Gateway passi!ig
Rejection Details to Response details.
Merchant Site through Share response
web redirection
SEIVET 10 Server

using web and ‘

communication

Note:-

In case of new debit card/Aadhaar flow there will not be any redirection to Bank. The debit card/Aadhaar
authentication will happen in NPCl side itself. For this ONMAGS will interact with Banks through API calls
for validating the mandate and debit card/Aadhaar information. (Detailed flow explained in section 4.2.3)

» Customer logins to the merchant site where he/she would be shown the mandate Information
> Specific details of the mandate along with deduction details needs to be shown.

> Customer can proceed with accepting the mandate if he/she finds the information displayed
is correct (Customer needs to enter the Bank account number before proceeding)

> Merchant site needs to provide the option for selecting Bank & Authentication Mode
(NetBanking, Debit Card, Aadhaar Card, PAN, Cust ID).

> Customer would be redirected to NPCI ONMAGS interface.

> NPCl Interface would show an intermittent page while processing happens in the back ground.

11 | Page

If the validation is successful, then NPCl will auto redirect to Bank’s authentication page based
on the Bank ID & Authentication Mode selected by the end user in the merchant site.

If the validation fails, then NPCI will redirect back to the Merchant Site posting the Error XML
response.

Bank will display the authentication Page based on the Auth mode selected by the user.

In the Banks page customer will authenticate either using the user’s net banking
credential or Debit card credentials based on the authentication mode user had selected in
the Merchant page.

Bank need to validate whether the Account Number passed in the request XML matches the
Account Number through which the customer has authenticated the login.

Once verified Bank Page will display the summary of the mandate and provide option for
accepting or rejecting the mandate

Once the customer has selected either of Approve / Reject link he would be redirected back
to NPCI ONMAGS interface

The NPCI ONMAGS interface will auto redirect to the merchant site

Merchant site will display the status of Mandate Approval

2.3 Mandate Approval function flow(AMEND, CANCEL, SUSPEND, REVOKE)

(L) rJ Ca)
I = . ONMAGS
UMRN Generation \

1=}

Amend initial rejection
P Amend AP Request
AMEND APl Reque (3a) {Successful MMS validation)

Cig) Amend AP{ Response (5
. - s/ N2 Mo
s " P . Destination Bank
Amend AP Response E > G537 4 > (Customer
4 Authentication)
u]
Merchant (Customer) MMS validation Mandate Insamion in
status MMS D8 for Approved
p— Mandate
4 \ N
validation in MMS system (2) 72
onmags to allow the request for — s A
suthentication Validation of allowed i 8 Y
smendment fields in 4
MMS system v
e s _MMS Response _
/(N a9
AMLINW a5 per

Current format

12 | Page

Sponsor Bank per bank choice)

'16 N XML RES ag per current
N/ format(Temporary flow as

The mandate approval flow is initiated from the Merchant end, request validated at NPCl end and sent
to MMS for validation, if validation is successful the request is forwarded to the Bank for authorization.
The confirmation provided back by the Destination Bank is relayed back to the merchant, if the
confirmation from bank is success, then persistence request is initiated to MMS.

Mandates Amend/Cancel/Suspend/Revoke through ONMAGS will be auto registered in MMS. The overall
flow and the integration between ONMAGS and MMS systems is explained by the above diagram.

2.4 Interface Layer

Necessary ports need to be opened between NPCl servers & Bank servers. Also required certificates needs
to be installed at NPCI & Bank Site servers.

For API flow (Direct Debit card/Aadhaar/PAN/Cust ID) authentication below details are required.

1. NPCI to Bank connectivity with specified port
2. Bank SSL certificate (FQDNS is preferred)
3. URL’s (mandate validation, verify OTP and resend OTP)

13 | Page

3. Specification Format for Request & Response

Appendix 7.1

Lists the XML file format for the request & response.

The specification for below request / response are listed in the document.

The data format would be XML. Schema structure and sample XML'’s can he found in Appendix 7.2.
< NPCI Mandate Request to Bank

NPClI ONMAGS will send the request to bank in the specified format
< Response from Bank to NPCI

Destination Bank will use this format for sending response bank to NPCl ONMAGS.

14 | Page

4. Technical Integration Specification

The below section lists a few of the technical requirements for the implementation.

4.1 Forward Flow specification from NPCI to Bank
This flow applies to Net Banking mode of authentication or for the Old Debit Card flow authentication.
Below are the steps done for securing the content of the Request data posted to the Bank from NPCI
1. The request XML to bank with all the tags present will be in the below format: -

<?xml version="1.0" encoding="UTF-8"?>
<Document xmlns="http://npci.org/ONMAGS/schema">

<MndtAuthReqg>
<GrpHdr>
<NPCI RefMsgId></NPCI RefMsgId>
<CreDtTm></CreDtTm>
<RegInitPty>
<Info>
<Id></Id>
<CatCode></CatCode>
<UtilCode></UtilCode>
<CatDesc></CatDesc>
<Name></Name>
<Spn_ Bnk Nm></Spn Bnk Nm>
</Info>
</ReqInitPty>
</GrpHdr>
<Mndt>

<MndtReqId></MndtReqgId>
<MndtId>UMRN</MndtId>
<Mndt Type></Mndt Type>
<Schm Nm><Schm Nm>
<Ocrncs>
<SeqTp></SeqTp>
<Frqgcy></Frqgcy>
<FrstColltnDt></FrstColltnDt>
<FnlColltnDt></FnlColltnDt>
</Ocrncs>
<ColltnAmt Ccy="INR"></ColltnAmt>
<MaxAmt Ccy="INR"></MaxAmt>
<Dbtr>
<Nm></Nm>
<AccNo></AccNo>
<Acct Type></Acct Type>
<Cons_Ref No></Cons Ref No>
<Phone></Phone>
<Mobile></Mobile>
<Email></Email>

15 | Page

<Pan></Pan>
</Dbtr>
<CrAccDhtl>
<Nm></Nm>
<AccNo></AccNo>
<MmbId></MmbId>
</CrAccDtl>
</Mndt>
</MndtAuthReg>
</Document>
2. Therequest XML to bank with all the tags present will be in the below format for AMEND:
<?xml version="1.0" encoding="UTF-8"?>
<Document xmlns="http://npci.org/ONMAGS/schema">
<MndtAuthReqg>
<GrpHdr>
<Msgld></Msgld>
<CreDtTm></CreDtTm>
<ReqlnitPty>
<Info>
<ld></ld>
<CatCode></CatCode>
<UtilCode></UtilCode>
<CatDesc></CatDesc>
<Name></Name>
<Spn_Bnk_Nm></Spn_Bnk_Nm>
</Info>
</ReqlnitPty>
</GrpHdr>
<Mndt>
<MndtReqld></MndtReqld>
<Mndtld>YESBO000000000000023<Mndtld>
<Reason>AMO05<Reason>
<Schm_Nm><Schm_Nm>
<Ocrncs>
<SeqTp></SeqTp>
<Frqcy></Frqcy>
<FrstColltnDt></FrstColltnDt>
<FnlColltnDt></FnlColltnDt>
</Ocrncs>
<ColltnAmt Ccy="INR"></ColltnAmt>
<MaxAmt Ccy="INR"></MaxAmt>
<Dbtr>
<Nm></Nm>
<AccNo></AccNo>
<Acct_Type></Acct_Type>
<Cons_Ref No></Cons_Ref No>
<Phone></Phone>
<Mobile></Mobile>

16 | Page

<Email></Email>
<Pan></Pan>
</Dbtr>
<CrAccDtl>
<Nm></Nm>
<AccNo></AccNo>
<Mmbld></Mmbld>
</CrAccDtl>
</Mndt>
</MndtAuthReg>
</Document>
3. The request XML to bank for CANCEL, SUSPEND, REVOKE and Custom Cancel with all the tags
present will be in the below format: -
<?xml version="1.0" encoding="UTF-8"?>
<Document
xmlns="http://npci.org/ONMAGS/schema">
<MndtAuthReqg>
<GrpHdr>
<NPCI RefMsgId></NPCI RefMsgId>
<CreDtTm></CreDtTm>
<RegInitPty>
<Info>
<Id></Id>
<CatCode></CatCode>
<UtilCode></UtilCode>
<CatDesc></CatDesc>

<Name></Name>
<UtilCode></UtilCode>
<Spn Bnk Nm></Spn Bnk Nm>
</Info>
</ReqInitPty>
</GrpHdr>
<Mndt>
<MndtReqId></MndtReqgId>
<MndtId>YESBO0O0O0000000000023<MndtId>
<Reason>CNO1<Reason>
<Dbtr>
<AccNo></AccNo>
</Dbtr>
<CrAccDhtl>
<Nm></Nm>
<AccNo></AccNo>
<MmbId></MmbId>
</CrAccDtl>

</Mndt>

</MndtAuthReqg>
</Document>

17 | Page

4. Generating checksum for the secure information in the XML

The below attributes needs to be concatenated for the purpose of generating Checksum:
e Debtor Account Number

First Collection Date

Final Collection Date

Collection Amount

Max Amount

The above attributes need to be concatenated with “|” symbol appended as the delimiter. The
order of the attributes needs to be as mentioned above. In case any of the attribute is null then
during concatenation the particular attribute will be replaced by an empty string.

Note:
The attributes to be concatenated might be changed at later point of time. Please refer the latest
version of the document for any revision on the attributes that needs to be marked for encryption.

Generate checksum on the concatenated values. We will use SHA-2 as the hash function.

5. Replace the secure information in the XML with the encrypted text. Below are the attributes
which will be encrypted in the request XML

Debtor Account Number
First Collection Date
Final Collection Date
Collection Amount

Max Amount

Phone

Mobile

Email

Pan

The attributes mentioned above needs to be encrypted individually and placed in the respective
XML tags. We will use the below methodology for encryption of secure information.

Encryption Methodology — Asymmetric

Hashing Algorithm — SHA256

Cryptography — RSA/ECB/OAEPWIithSHA-256AndMGF1Padding 2048 bits.

Encryption will be done using the Public Key of the certificate shared by Bank.
6. Signing of the Request XML

The request XML got from Step-2 will be signed using the Private Key certificate of NPCI.

18 | Page

NPCI will send the below data as MIME content to Merchant with type as “application/x-www-form-
urlencoded” in the request body.

Note :Checksum is not required for Cancel,Suspend,Revoke and Custom Cancel flows.

MandateReqDoc Output of the Step-3

Encrypted Output of Step-1 (only for
CheckSumVal e 2 p-1 (only
Create and Amend)

4.1.1 Encoding of Request XML for Banks

The request XML from NPCI to Bank will be encoded to prevent any malicious attack. Banks will need to
accept the encoded xml content at their end then decode it to get the original content.

The encoded request XML will look as below: -

&1lt; ?xml version="1l.0" encoding="UTF-8"?>
&1t;Document xmlns="http://npci.org/ONMAGS/schema" >
&1lt;MndtAuthReqgé>
&1t;GrpHdré>
&1t;NPCI RefMsgIdé></NPCI RefMsgIdé>
&1lt;CreDtTmé> &1t; /CreDtTmé>
&1lt;ReqglnitPty>
<Infoé>
&1t;Id>< /Id>
&1lt;CatCode> &1t; /CatCodes>
<UtilCodes> < /UtilCodes>
&1t;CatDescé> < /CatDescé>
&1t;Names> &1t; /Name>
<Spn Bnk Nmé></Spn Bnk Nmé>
&1t;/Info>
&1t; /RegInitPtys>
&1t;/GrpHdr>
<Mndté>
&1lt;MndtReqld> &1t; /MndtRegldé>
&1lt;MndtIdé> UMRN&1t; /MndtId>
<Mndt Typeé> </Mndt Typeé>
&1lt;Schm Nmé> &1lt; Schm Nmé>
&1t;Ocrncsé>
&1t;SeqTpé> < /SeqTp>
<Frgcyé> < /Frgcy>

19 | Page

<FrstColltnDté> < /FrstColltnDt>
&1lt;FnlColltnDté> < /FnlColltnDt>

</Ocrncsé>

&1lt;ColltnAmt

Ccy=" INR" > &1t; /ColltnAmté>

<MaxAmt Ccy=" INR" > < /MaxAmt>

&1t;Dbtré>
&1t;Nm> < /Nm>
<AccNo> < /AccNo>
<Acct Typeé> </Acct Typeé>
<Cons Ref Noé></Cons Ref No>
&1t;Phone> < /Phones>
<Mobile> < /Mobile>
<Email> < /Emailé>
<Pan> < /Pan>

</Dbtré>

&1t;CrAccDtlé>
&1t;Nm> < /Nm>
&1t;AccNoé> < /AccNo>
<MmbIdé> < /MmbId>

&1t; /CrAccDtlé>

&1t; /Mndté>
&1t; /MndtAuthReq>
&1t; /Documenté>

4.2 Bank Site Integration Requirements

4.2.1 NetBanking Flow

In case of Netbanking or if the Bank has opted for the old debit card flow, then NPCI ONMAGS would
redirect to Bank Page. The URL for redirection for Net banking should be made available to NPCI by the
banks. NPCI will pass the XML content mentioned in the sheet (“NPCI Mandate Request to Bank”) &
CheckSumVal as part of the request.

The request body will contain the following key-value pair.

MandateReqDoc Encrypted and Signed XML

CheckSumVal Encrypted Checksum Hash value (only for
Create and Amend)

20 | Page

Specifics on Signing, Encryption and Checksum are mentioned in the section 4.2.1

Bank site should unsign the XML using the public key of NPCl and then decrypt the key fields using the
private key of the Bank. Checksum should be decrypted using the private key of the Bank. In case of any
errors during unsigning, decryption or checksum validation, Bank needs to construct the Error response
in the format “ErrorXML Resp from Bank to NPCI”.

Below are the validations done at Bank layer for the request received from NPCI. For more details refer
to sheet “NPCI Mandate Request to Bank” in the excel “NPCI Mandate Authorization Specification for
Banks.xIsx” available in the Appendix Section.

xmins Namespace tag. This is mandatory Alpha
tag. Value cannot be empty. Numeric
Namespace value should be
“http://npci.org/ONMAGS/schema”

NPCI_RefMsgld | NPCl_RefMsgld from NPCI should be | Alpha 35 Message ID for NPCI
unique Numeric Reference

CreDtTm Should be in ISO Date time format. = Alpha 25
E.g.2017-02-09T15:11:39 Numeric

ID Request Initiating Party ID. In this | Alpha 18 ID & UtilCode value
case it will be Corporate / Merchant | Numeric would be the same.

ID. Should not be null. Will be
validated if this is a valid Merchant ID
with the master.

UtilCode Utility Code would be validated Alpha 18 ID & UtilCode value
against the masters. It should be 7 Numeric would be the same.
digit OLD ICS or 18 digit Utility code.

CatCode Identifies under which category the | Alpha 4

mandate is created. Will be validated | Numeric
against the masters maintained by

NPCI
Name Should not be empty Alpha 40 Corporate Name.
Numeric
Spn_Bnk_Nm Corporate Sponsor Bank Name Alpha 140 Should be a valid Bank
Numeric Name as per MMS
CatDesc Category Description should | Alpha 50
correspond to Category Code in the | Numeric
Master
MndtReqld Mandate Req ID length should be <= = Alpha 35
35. Should be unique for the day Numeric
Mndtid This tag will contain the UMRN @ Alpha 35 UMRN

generated in MMS for the mandate. = Numeric

21 | Page

Mndt_Type
Schm_Nm
SeqTp

Frgcy

FrstColltnDt

FnlColltnDt

CollthAmt

MaxAmt

Debtor Nm
Debtor AccNo
Acct_Type
Cons_Ref_No

Phone

Mobile

Email
Pan
Creditor Nm

Creditor AccNo

22 | Page

Mandate Type

Scheme Name / Plan Reference
Number
Allowed values are RCUR or OOFF

This is an optional field. If present
should adhere to the list value
available in MMS Masters.

Date of First Collection. Mandatory
Field. This field is in ISODate Format
Date of Final Collection. Optional
Field. This field is in ISODate Format

Either of CollthnAmt or MaxAmt is
mandatory.

Amount Should be given as 100.00
Either of CollthAmt or MaxAmt is
mandatory

Amount Should be given as 100.00
Customer name should be maximum
of 40 digit

Customer Account Number should
be maximum of 35 digit.

Debtor Account Type

Consumer Reference Number

Phone Number of the Customer

Mobile Number of the Customer

Email ID of the Customer
Pan Number of the Customer
Corporate Name. Length will be 40

Will be the 18 digit Corporate ID

Alpha
Numeric
Alpha
Numeric
Alpha
Numeric
Alpha
Numeric

Alpha
Numeric
Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric
Alpha
Numeric
Alpha
Numeric
Alpha
Numeric
Alpha
Numeric

Alpha
Numeric

Alpha
Numeric
Alpha
Numeric
Alpha
Numeric
Alpha
Numeric

16

16

13

13

40

35

35

35

16

14

50

10

140

18

Should be DEBIT

Allowed Values are:
ADHO, INDA, DAIL,
WEEK, MNTH, QURT,
MIAN, YEAR, BIMN

If this field is left blank
then deduction will
happen until Cancelled.

Should be either of
SAVINGS or CURRENT

Should be given in the

format +91-XXX-
XXXXXXXX. +91- is
mandatory.

Should be given in the
format +91-XXXXXXXXXX.
+91- is mandatory.

Should be valid email id

Should be in Valid PAN
format

Mmbld Will be 11 digit IFSC code Alpha 11 IFSC Code of the

Numeric Sponsor Bank which is
available in the ONMAG
Live Bank list
Reason Reason for Amend / Cancel / Alpha 4

Suspend / Revoke / Custom cancel = Numeric
from MMS system

End user would enter his/her net banking credentials information in the authentication page of the bank.
An SMS OTP validation also has to be done as second level authentication.

Upon making a successful login bank should first validate whether the bank account number passed in the
request XML matches the bank account number of the authenticated end user. If the bank account
number does not match the customer would not be allowed to proceed further. Appropriate error
message needs to be displayed to the customer and a link provided to return back to the merchant site.

If the customer is not able to make a successful login after predetermined login attempts the Bank has to
redirect back to the NPCI ONMAGS layer. The reject reason will be “Invalid Login Credentials”.

If the account number matches, then the customer needs to be shown a form which displays specific
details of the mandate and a “Terms & Policy” section displaying terms and policies of the bank. A
confirmation check box needs to be provided for end user for agreeing to the displayed information.

The below information needs to be mandatorily displayed to the User at the Bank end:

Mandate request Initiate Party’s Category Description (“CatDesc”) (Only for Create and Amend)
Name of Initiator (In all operation like create, amend, cancel, suspend and revoke)

Collection Amount (Only for Create and Amend)

Max Amount (Only for Create and Amend)

Recurring Frequency (Only for Create and Amend)

First Collection Date (Only for Create and Amend)

Final Collection Date (Only for Create and Amend)

UMRN (In all operation like create, amend, cancel, suspend and revoke)

VVY YV VVY

User has to be provided links for either accepting the mandate or Rejecting the mandate. On selection of
either of the option the user would be redirected to the NPCl ONMAGS interface. The response should
contain the XML mentioned in the sheet “Response from Bank to NPCI”. The element <AccptncRslt> will
contain the result of the approval status of the mandate. The URL for redirection to NPCI ONMAGS
interface would be shared by NPCI.

The response body will contain the following key-value pair. Bank will send the below data as MIME
content to NPCI with type as “application/x-www-form-urlencoded”.

23 | Page

BankID Participant ID of the Bank in NACH

MandateRespDoc Encrypted and Signed XML

CheckSumVal Encrypted Checksum Hash value (only for
Create and Amend)

RespType Will be either of ErrorXML / RespXML

mndtType Mandate type of Request

Note : mndtType will not be present for Create Flow
Below are the steps to be done for securing the content of the Response XML:
1. Generating checksum for the secure information in the XML

The below attributes needs to be concatenated for the purpose of generating Checksum:
a) Accptd
b) AccptRefNo
c) ReasonCode
d) ReasonDesc
e) RejectBy

The above attributes need to be concatenated with “|” symbol appended as the delimiter. The
order of the attributes needs to be as mentioned above.

Note:
The attributes to be concatenated might be changed at later point of time. Please refer the latest
version of the document for any revision on the attributes that needs to be marked for

Generate checksum on the concatenated values. We will use SHA-2 as the hash function.
2. Replace the secure information in the XML with the encrypted text.

The attributes mentioned above needs to be encrypted individually and placed in the respective
XML tags. Encryption should be done using the public key of the certificate which NPCI shares.

We will use the below methodology for encryption of secure information.

24 | Page

Encryption Methodology — Asymmetric

Hashing Algorithm — SHA256

Cryptography — RSA/ECB/OAEPWIithSHA-256 AndMGF1Padding 2048 bits

Encryption needs to be done using the Public Key of the certificate shared by NPCI.

3. Signing of the Response XML

The response XML got from Step-2 has to be signed using the Private Key certificate of the Bank.

The below are the validation done at NPCI ONMAGS layer for the response received from Bank. For more
details refer to sheet “Response from Bank to NPCI” in the excel “NPCI Mandate Authorization

Specification for Banks” available in the Appendix Section.

Element Name

Xmins

Msgld

GrpHdr
CreDtTm
ReqlnitPty

MndtReqld

NPCI_RefMsgld

OrgnlMsgInf
CreDtTm
MsgNmid

Accptd

AccptRefNo

25 | Page

Validation

Namespace tag. This is mandatory tag. Value
cannot be empty. Namespace value should
be “http://npci.org/ONMAGS/schema”

This is a reference generated by the bank to
identify the response message. Should be
unique for the day for a Bank

Should be in ISO Date time format.
E.g.2017-02-09T15:11:39

Request Initiating Party ID. This will refer to
the Bank Short Code

Mandate Request ID should be same as the
MndtReqld send in the original request to
Bank

Message ID for NPCl Reference in the original
request. Should be same as the
NPCl_RefMsgld send in the original request
to Bank

Creation Date Time send in the original
request to Bank

Both the tag & value are optional

Mandatory. Allowed values are true / false

Will be non-empty if accptd is true. Should be
unique for the Bank. If accptd is false empty
value can be provided.

Lengt
h

35

25

18

35

35

18

34

Remarks

Indicates
mandate

whether the
request was

accepted or rejected.

Accepted
Number.

Reference

ReasonCode

ReasonDesc

RejectBy

IFSC

4.2.2

Mandatory if <Accptd> value is false. Reason
code should be as per master provided by
NPCI.

Mandatory. Reason Description should
match the Reason Code specified by NPCI.

Mandatory. Should be either of “BANK” or
“USER” or “N/A”

Mandatory if <Accptd> tagvalue is true, IFSC
of the destination bank

New Debit Card Flow

50

10

11

If acceptance is false,
reason code of rejection is
entered here. If
acceptance is true then
this value would be “N/A”.
If acceptance is false,
reason description of
rejection is entered here. If
acceptance is true then
this value would be “N/A”.
If acceptance is true then
this value would be “N/A”.

In case Bank has opted for the new Debit Card Flow, then from the merchant site, the user will be landing
on the NPCl’'s ONMAGS Debit Card authentication page.

Debit Card Information will be accepted in ONMAGS page itself and validated with Bank through server
to server call. The steps in this flow is described below:

The mandate information passed by the merchant will be displayed in the top portion of the page.

26 | Page

Debit Card Authentication

Welcome Mr/Mrs. senthamizh,
Account Number
963259685412

Please verify the Mandate details to setup the

Mandate. Incase of any discrepancy found you may
cancel the registration process else you may proceed

with Debit card Authentication Mandate Issued To

senthamizh

Start Date

End date

Frequency
BIMN

Amount In Figures

1000.60

Amount In Words

one thousand

ABC123

2020-87-28+05:30

Purpose Of Mandate

Mandate Details

User needs to verify the mandate information displayed in the Mandate Details section. Once
mandate information are verified by the user he/she can proceed with entering the Debit Card
information in the lower section of the page.

Disclaimer Debit Card Details
* One time mandate registration chasges will be applicable at your bank as per the latest schedule of charges

* Registration of this mandate will authorise the user entity/ corporate/ service provider to debit your account based
on the instructions provided Card Number

* You are authorised to cancel/ amend this mandate at any given point of time by appropristely communicating the
cancelistion/ amenciment request to the user entity/ corporate/ service provider or the bank

Expiry/Validity v

PIN

Below are the validation done related to the entered Debit Card Details

Card Number should be 16 digit Numerical.

Expiry Year and Month should be current month or future year month.

Expiry period cannot be greater than 10 years.

CVV should be 3 digit Numeric.

PIN number 4 to 6 digit numeric field

CVV/PIN/BOTH is mandatory based on the banks preference (Banks can opt for CVV+PIN
(or) either CVV/PIN))

On entering the Debit Card Information user can click on Continue, to proceed with Debit Card
Verification.

In case the user does not want to proceed further with authentication then he/she can click on Cancel.
On clicking on Cancel, the transaction will be cancelled, merchant response gets generated redirects to
the Merchant response page.

4.2.2.1 Request Information to Bank

Once the User clicks on Continue, ONMAGS will construct the below
JSON request and post to the Bank. Both the Mandate Details and the Card Information will be
passed in the request. The request will be made as an API call to the bank and will happen as a
server to server call. The response to the API call has to be provided in a synchronous manner by the
bank.

JSON Request with Mandate and Card information

=
"mandateAuthDtls": (&
"transactionID": "<Transaction ID>",
“mndtType” : ”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM_CZ—\NCEL attributes>",
"mandateRequestDtl": {E
"MandateRegDoc": "<Encrypted and Signed response XML>",

27 | Page

"CheckSumval": "<Check sum value of secure attributes>"
1

"cardInfo": ([
"cardNo": "<Encrypted Card Number>",
"expiry": "<Encrypted expiry Date>",
"cvv": "<Encrypted CVV>",
"pin": "<Encrypted pin>"

}
}

Note:
Based on the banks the pin / cvv / pin and cvv will be present. Pin length can be configured as 4 or 6
based on the bank.

e mndtType will not be present for Create Flow

e MandateRegDoc XML will be encoded and sent.

® For encryption the existing logic and keys will be used (i.e, NPCI will do the encryption using the
Public Key provided by the bank and Bank will do the decryption using their private key).

e Pin attribute will be encrypted using separate public key and bank will do decryption using the
respective private key.

Bank needs to first verify the mandate request details and then the card details and provide the
response in any of the below formats.

A. If the destination bank is unable to parse the mandate request it will send the response in the
below format. Bank need not validate the card details if sending failure response (because of
request XML validation failure at bank end).

=
"mandateVerifyDtls": {[E
"transactionID": "<Transaction ID>",
“mndtType” :”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM7CANCEL attributes>”,
"mandateValidation": "failure",
"cardValidation": "none",
"mandateRejectDtl": ([
"ErrorCode": "<Error Code>",
"ErrorDesc": "<Error Description>"

}

Note:-

Attribute values mandateValidation, cardValidation, ErrorCode & ErrorDesc needs to be encrypted. Bank
needs to encrypt using NPCI public key.
B. If destination bank is able to successfully parse the mandate request XML but business validation

of XML fails, then bank needs to send the response in the below format. Card details need not be

validated in such a scenario.

{
"mandateVerifyDtls": {
"transactionID": "<Transaction ID>",
“mndtType” : ”"<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL attributes>”,

28 | Page

"mandateValidation": "failure",

"cardValidation": "none",
"mandateRejectDtl": {
"ReasonCode": "<Reason Code>",
"ReasonDesc": "<Reason Description>"

Note:-
Attribute values mandateValidation, cardValidation, ReasonCode & ReasonDesc needs to be encrypted

l. If the destination bank is able to successfully parse the mandate request XML

and business validation passes, then bank needs to validate the card details.
Bank needs to verify the below details:Verify Debit Card Number

Il. Verify Expiry / validity

ll. Verify CVV number

IV. Verify PIN number (if its applicable)

V. Account number of debit card matches with the “Debtor AccNo” provided in
the mandate Request XML

If any of the above validation fails, then the bank needs to provide the response as below: -

=
"mandateVerifyDtls": {E
"transactionID": "<Transaction ID>",
“mndtType” : ”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOMﬁCANCEL attributes>”,
"mandateValidation": "success",
"cardValidation": "failure",
"mandateResponseDtl": {[E
"accptRefNo": "<Accept Reference Number>",
"dbtrIfsc": "<Debtor IFSC>",
"dbtrAcctType": "<Debtor Account Type>"

b
"cardVerifyDtl": {H

"ErrorCode": "<Error Code>"

}
}

X If Card validation is failure User would be provided with option of reattempting Card validation
further 2 times. An alert message as Invalid Debit Card Details Remaining attemts:2 will appear
on the screen. User can proceed by entering the correct Card details again and continue.

29 | Page

Disclaimer Debit Card Details

tion charges will be

per the latest schedule Session expires in...10min 18sec

Card Number

Expiry/Validity o
—
sse 9%
provider or the bank
id Debit Card Details §

Note:-
Attribute values mandateValidation, cardValidation, AccptRefNo & ErrorCode needs to be encrypted.

The below table provides the error codes details that are newly introduced for Direct Debit Card Flow

error'_code error desc applicable_|
_id - eg
601 Invalid Debit Card Number BTN
602 Invalid Expiry / Validity BTN
603 Invalid CVV BTN
604 Debit card information is not matched with the associated BTN
account number
605 Otp Verification Failure BTN
606 Duplicate Request MTN
607 Previous Request in Progress MTN
608 Bank Restricts Duplicate request MTN
609 Invalid PIN BTN

C. Ifallthe above validation passes, then the bank needs to provide the response as below: -

1=
"mandateVerifyDtls": {E
"transactionID": "<Transaction ID>",
“mndtType” :”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL attributes>”,
"mandateValidation": "success",
"cardValidation": "success",
"mandateResponseDtl": {E
"accptRefNo": "<Accept Reference Number>",
"dbtrIfsc": "<Debtor IFSC>",
"dbtrAcctType": "<Debtor Account Type>"

by
"cardVerifyDtl": {E=

"successCode": "<Success Code>"
}

30 | Page

Note:-
e Attribute values mandateValidation, cardValidation, AccptRefNo & successCode needs to be
encrypted
e |FSC code is optional field, if banks give invalid IFSC code in the Response ONMAGS system will
update the IFSC code as per the Bank Masters
® Bankneeds to store the mandate details received along with the transaction ID for the subsequent
OTP validation.

For scenarios (a), (b) & (c) ONMAGS will construct the merchant rejection response and redirect to the
merchant. Bank needs to mark the mandate as rejected at their end for these scenarios. For scenario (d)
mandate status will be “In Process” for the bank until the OTP verification is completed.

For scenario (d) ONMAGS will redirect to the OTP verification page.

OTP Authentication

Please proceed with OTP Authentication process
for Debit card Authorization. Incase of any

Please enter OTP sent by xxxx Bank on your registered

= Z A mobile
discrepancy found you may cancel the registration

process else you may proceed with OTP
Authentication

OTP will be a 6 digit numeric number.
® In case User did not receive OTP, there is an option to Resend OTP which the user can retry
maximum of 3 times.

e Once user clicks on the verify button the entered OTP is encrypted and sent to the server. From
the server end VerifyOTP API call will be made to the bank server.

B
"otpInfo": E
B
"transactionID": "<Transaction ID>",
"otp": "<Encrypted OTP Value>"

}
}

e |n case of retry as well the request will be posted to bank in the above mentioned format only.

The encryption on the OTP will follow the existing encryption methodology. Bank needs to decrypt the
OTP and verify it based on the transaction ID. The OTP verification status needs to be sent in the below
json format by the bank.

1=
"otpVerifyInfo": E
1=
"transactionID": "<Transaction ID>",
"optVerifyStatus": "<Encrypted OTP verification status. It will be either

success / failure>"

31 | Page

}

If OTP verification is successful only Bank needs to mark the mandate as accepted at their end. Until OTP
validation is passed the mandate would be in non-accepted state at the Bank end.

If OTP validation is failure User would be provided with option of reattempting OTP validation further 2
times. An alert message as below will be shown to the user. User can then proceed with entering the

correct OTP again and re-verify.

OTP Validation

Invalid OTP.Attempts Remaining: 2

Resend OTP:
{

"debitAuthDtls": {
"transactionID":
"cardInfo": {

"cardNo": "",
"expiry": ""
"cvv": "M
"pin": "<Encrypted pin>"

nu
’

32 | Page

4.2.3 Aadhaar Based Authentication Flow

AADHAAR |z
4 } I
[:
Corporate : : :

]

1

ZS L
u—""ﬁh I, ! 1
—tEN].-_ 14 417 18
—F B - g

*\ l

Step1l: Customer has initiated the request via Merchant Portal i.e., Web Browser

Step2: Customer will be redirected to ONMAGS Platform to enter the details required for Aadhaar
authentication.

Step3: Customer enters Aadhaar Number along with required details.

Stepd: ONMAGS Platform will forward that request to UIDAI for Customer Authentication via OTP
generation

Step5: UIDAI will generate the OTP and send it to Customer’s registered mobile number for Authentication
Step6: Customer will enter the OTP in the ONMAGS OTP page
Step7: ONMAGS Platform will forward that OTP to UIDAI for Verification

Step8: UIDAI sends response for OTP Verification. If the request is not authenticated by UIDAI then the
flow ends here by showing the error message in Merchant Portal.

Step9: Once the customer is successfully authenticated, then the ONMAGS platform will send the
mandate request to destination bank. If customer bank doesn’t opt for additional OTP authentication then
skip Step 10, Step 11 and Step 12.

Step10: After customer successfully authenticated by UIDAI, he/she will be landed on ONMAGS OTP page.
ONMAGS will send an APl request to customer’s Bank to verify the customer details will generate the Bank
OTP and send it to customer for Authentication.

33 | Page

Step11: Customer will enter the Bank OTP in ONMAGS platform for Authentication.
Step12: ONMAGS platform will forward that OTP to destination bank for Verification.

Step13: If OTP verification is successful only Bank needs to mark the mandate as accepted at their end.
Until OTP validation is passed the mandate would be in non-accepted state at the Bank end.

Step 14: ONMAGS Platform in turn redirects the response to Merchant Web Page where customer can
view the response.

Auth mode: Aadhaar

Privilege: Initiated by ONMAGS (NPCI)
API type: Sync

Request Type: JSON

HTTP Method: POST

Parameter Specification

Parameters Data Type Description
mandateAuthDtls JSON Object This will contains mandate
Request details and aadhaar
Info
transactionID String This is used for the complete

transaction for mandate
registration. ALPNUM String
with Length is 20.

mandateRequestDt| JSON Object This will contains Encrypted
mandate Request Doc XML
and Encrypted checksum value

MandateReqDoc String See below table for Mandate
Request Doc.

CheckSumVal String How to generate Checksum
value is mentioned above.

34 | Page

authMode String If Authmode is null, then user
will get cardinfo JSON Object
and consider as authomode as
Debit Card else authMode
value will be Aadhaar and user
will get aadhaarinfo JSON
Object in request.

aadhaarinfo JSON Object This will contains the aadhaar
details and flag indicating that
the customer authentication
has been successful though

UIDAI.

aadhaarNo String Last four digit of aadhaar
number

uidaiAuthenticated Char Always Y to be sent

Mandate Request to Bank:

1=
"mandateAuthDtls": {H

"transactionID": "<Transaction ID>",

“mndtType” :”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL attributes>",

"mandateRequestDtl": {[E h
"MandateRegDoc": "<Encrypted and Signed request XML>",
"CheckSumvVal": "<Check sum value of secure attributes>"

}I

"authMode" :"Aadhaar",

"aadhaarInfo": (&
"aadhaarNo": "<Encrypted Aadhaar Number>",
“uidaiAuthenticated” : “Y”

Unencrypted and Unsigned request XML for MandateReqDoc Key:

Element Name Validation Data Type Length Remarks

35 | Page

Xmlns

NPCI_RefMsgld

CreDtTm

UtilCode

CatCode

Name

Spn_Bnk_Nm

CatDesc

MndtReqld

36 | Page

Namespace tag. This is mandatory
tag. Value cannot be empty.
Namespace value should be
“http://npci.org/ONMAGS/schema”

NPCl_RefMsgld from NPCl should be
unique

Should be in ISO Date time format.
E.g.2017-02-09T15:11:39

Request Initiating Party ID. In this
case it will be Corporate / Merchant
ID. Should not be null. Will be
validated if this is a valid Merchant
ID with the master.

Utility Code would be validated
against the masters. It should be 18
digit Utility code.

Identifies under which category the
mandate is created. Will be
validated against the masters
maintained by NPCI

Should not be empty

Corporate Sponsor Bank Name

Category Description should
correspond to Category Code in the
Master

Mandate Req ID length should be <=
35. Should be unique for the day

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

35

25

18

18

40

140

50

35

Message ID for
NPCI Reference

ID & UtilCode value
would be the same.

ID & UtilCode value
would be the same.

Corporate Name.

Should be a valid
Bank Name as per
MMS

Mndtid

Mndt_Type

Schm_Nm

SeqTp

Frgcy

FrstColltnDt

FniColltnDt

ColltnAmt

MaxAmt

Debtor Nm

37 | Page

This tag will contain the UMRN
generated in MMS for the mandate.

Mandate Type

Scheme Name / Plan Reference
Number

Allowed values are RCUR or OOFF

This is an optional field. If present
should adhere to the list value
available in MMS Masters.

Date of First Collection. Mandatory
Field. This field is in ISODate Format

Date of Final Collection. Optional
Field. This field is in ISODate Format

Either of ColltnAmt or MaxAmt is
mandatory.

Amount Should be given as 100.00
Either of ColltnAmt or MaxAmt is
mandatory

Amount Should be given as 100.00

Customer name should be maximum
of 35 digit

Alpha
Numeric

Alpha

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

20

35

20

16

16

13

13

40

UMRN

Should be DEBIT

Allowed Values are:
ADHO, INDA, DAIL,
WEEK, MNTH,
QURT, MIAN, YEAR,
BIMN

If this field is left
blank then
deduction will
happen until
Cancelled.

Debtor AccNo

Acct_Type

Cons_Ref_No

Phone

Mobile

Email

Pan

Creditor Nm

Creditor AccNo

Mmbld

Mndtld

38 | Page

Customer Account Number should
be maximum of 35 digit.

Debtor Account Type

Consumer Reference Number

Phone Number of the Customer

Mobile Number of the Customer

Email ID of the Customer

Pan Number of the Customer

Corporate Name. Length will be 40

Will be the 18 digit Corporate ID

Will be 11 digit IFSC code

Will be 20 digit UMRN

Alpha
Numeric

Alpha

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

Alpha
Numeric

35

20

34

34

50

27

140

18

11

20

Should be either of
SAVINGS or
CURRENT

Should be given in
the format +91-xxx-
XXXXXXXX. +91- is
mandatory.

Should be given in
the format +91-
XXXXXXXXXX. +91- is
mandatory.

Should be valid
email id

Should be in Valid
PAN format

IFSC Code of the
Sponsor Bank which
is available in the
ONMAG Live Bank
list

Except Create Flow

ReasonCode will be 4 digit Reason code Alpha 4 Except Create Flow
Numeric

Bank needs to first verify the mandate request details

a) If the destination bank is unable to parse the mandate request it will send the response in the
below format. Bank need not validate the aadhaar details if sending failure response (because
of request XML validation failure at bank end).

Parameters Datatypes Description

mandateVerifyDtls JSON Object Mandate verify details contains
transaction ID, mandate
Validation and mandate reject
details

transactioniD String This is the same transaction ID

which Is passed in request for
mandate registration. ALPNUM
String with Length is 20.

mndtType String This will contain the operation
AMEND / CANCEL / SUSPEND/
REVOKE /CUSTOM_CANCEL.
mndtType will not be present
for Create Flow.

mandateValidation String This will return either success
or failure.

aadhaarValidation String This will return either success
or failure.

mandateRejectDt| JSON Object This will contain error code and
error desc

ErrorCode Integer This will be between 000 to 999

39 | Page

ErrorDesc String This will be the corresponding
error description for the error
code.

signature String The Response payload will
be signed with bank’s
private key and algorithm
used as RSA_USING_SHA256

checkSumval String Generate checksum on the
entire payload. We will use
SHA-2 as the hash function

Error Response from Bank for Mandate request:

=]
"mandateVerifyDtls": {[
"transactionID": "<Transaction ID>",
“mndtType” :“<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL attributes>”,
"mandateValidation": "failure",
"aadhaarValidation": "none",
"mandateRejectDtl": {E
"ErrorCode": "<Error Code>",
"ErrorDesc": "<Error Description>"
}
}I
"signature": "<Encrypted and Signed response JSON>",
"checkSumval": "<Check sum value of complete payload>"

Note:-

Attribute values Mandate Validation, Aadhaar Validation, Error Code & ErrorDesc needs to be encrypted.
Bank needs to encrypt using NPCI public key.

b) If destination bank is able to successfully parse the mandate request XML but business validation
of XML fails, then bank needs to send the response in the below format. Aadhaar details need

not be validated in such a scenario.
{
"mandateVerifyDtls": {
"transactionID": "<Transaction ID>",
“mndtType” : ”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM_CANCEL attributes>”,
"mandateValidation": "failure",
"aadhaarValidation": "none",

40 | Page

"mandateRejectDtl": {
"ReasonCode": "<Reason Code>",
"ReasonDesc": "<Reason Description>"
}
}I
"signature": "<Encrypted and Signed response JSON>",

"checkSumval": "<Check sum value of complete payload>"

Note:-

Attribute values Mandate Validation, Aadhaar Validation, Reason
Code, Reason Desc & checkSumVal needs to be encrypted

c) Aadhaar Validation

1. Aadhaar number of debtor should matches with the “Aadhaar linked with the Debtor
AccNo” provided in the mandate Request XML

2. Aadhaar number should linked with the debtor Account Number.
If the above validation fails then the bank needs to provide the response as above format 2™ type.

=
"mandateVerifyDtls": ([
"transactionID": "<Transaction ID>",
“mndtType” :”<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL attributes>”,
"mandateValidation": "success",
"aadhaarValidation": "failure",
"mandateResponseDtl": {E
"accptRefNo": "<Accept Reference Number>",
"dbtrIfsc": "<Debtor IFSC>",
"dbtrAcctType": "<Debtor Account Type>"

by
" aadhaarRejectDtl ": {E

"ReasonCode": "<Reason Code>"
}
}I
"signature": "<Encrypted and Signed response JSON>",
"checkSumval": "<Check sum value of complete payload>"

The below table provides the error codes for different failure reasons.

Failure Reason Reason Code
Aadhaar number Does not Match with AP48
debtor Account number
Aadhaar number not linked with the AP51
debtor Account number

41 | Page

d. If all the above validation passes then the bank needs to provide the success response as
below:-

Success Response for Mandate request to Bank:

=]
"mandateVerifyDtls": {[
"transactionID": "<Transaction ID>",
“mndtType” : “<AMEND /CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL attributes>”,
"mandateValidation": "success",
"aadhaarValidation": "success",
"mandateResponseDtl": {E
"accptRefNo": "<Accept Reference Number>",
"dbtrIfsc": "<Debtor IFSC>",
"dbtrAcctType": "<Debtor Account Type>"

o
"aadhaarVerifyDtl": ([

"successCode": "<Success Code>"
}
}I
"signature": "<Encrypted and Signed response JSON>",
"checkSumval": "<Check sum value of complete payload>"

}

The below table provides the code for the success

_ -

Note:-

i Attribute values mandateValidation, aadhaarValidation, AccptRefNo , successCode &b
checkSumVal needs to be encrypted.

ii. Bank needs to store the mandate details received along with the transaction ID for the
subsequent OTP validation.

For scenarios (a), (b) and (c) ONMAGS will construct the merchant rejection response and redirect to the
merchant. Bank needs to mark the mandate as rejected at their end for these scenarios. For scenario (d)
if bank has opted for OTP validation then mandate status will be “In Process” for the bank until the OTP

verification is completed, else mandate status will be “Accept” and send the response back to ONMAGS.

For scenario (d) ONMAGS will redirect to the OTP verification page.

Below are the steps to be done for securing the content of the Response JSON:

42 | Page

1. Generating checksum for the secure information in the Response JSON (Mandate and
Aadhaar validation)

The below attributes need to be concatenated for the purpose of generating Checksum:

Transaction ID

Mandate Validation

Accepted Ref No.

Dbtr Account type

Dbtr IFSC

Reason Code

Reason Desc

Error Code

Error Desc

Aadhaar Validation

Success Code

Aadhaar Reason Code
. Aadhaar Error Code

JSON Web Signature

ZIrACTIOMMON®>

2. Generating checksum for the secure information in the Response JSON (OTP Validation)

The below attributes need to be concatenated for the purpose of generating Checksum:

Transaction ID
Verify Status

Error Code

Reason Code

JSON Web Signature

mooOo WP

The above attributes need to be concatenated with “|” symbol appended as the delimiter. The order of
the attributes needs to be as mentioned above.
Note:
The attributes to be concatenated might be changed at a later point of time. Please refer the
latest version of the document for any revision on the attributes that needs to be marked for

Generate checksum on the concatenated values. We will use SHA-2 as the hash function.
3. Signing of the Response JSON

e The complete response we are going to use as a payload.

43 | Page

e The response JSON has to be signed using the Private Key certificate of the Bank.

e Json Web Signature is used for generating digital signatures and the same will
be validated at the NPCl end.

Note :

® Except transaction ID, Dbtr Account Type and Dbtr IFSC field, all the fields are encrypted. For
generating checksum, we are going to use encrypted values. If value is not present in response,
then we will use empty string for that key.

® Since we are using Signature value while generating Checksum, so that first we need to sign the
response then generate checksum

Bank OTP Verification Request for Same Mandate request:

Parameters DataTypes Description

otplnfo JSON Object This will contains the
transaction Id same used in
OTP generation and Encrypted
OTP which is received on
registered mobile in bank

transaction|D String Same transaction ID used in
mandate request to bank.
ALPNUM String with Length is
20.

otp String Encrypted OTP received on
registered mobile in the bank.
Length is 4.

"otpInfo": [I=
{_
"transactionID": "<Transaction ID>",
"otp": "<Encrypted OTP Value>"

@ In case of retry as well the request will be posted to bank in the above mentioned format
only.

44 | Page

The encryption on the OTP will follow the existing encryption methodology. Bank needs to decrypt the
OTP and verify it based on the transaction ID. The OTP verification status needs to be sent in the below
json format by the bank.

Response From Bank for Bank OTP Verification for the same Mandate request:

Parameters DataTypes Description

otpVerifyInfo JSON Object This will contain the same
transaction Id which is sent in
mandate request to bank and
encrypted status as success or
failure.

transactionID String Transaction Id is the same Which
is sent in verify request bank OTP.
ALPNUM String with
Length is 20.

optVerifyStatus String Encrypted OTP verification status.
It will be either success / failure

a) If OTP verification at bank end is success then the response will be as below:

=
"otpVerifyInfo":

1=

"transactionID": "<Transaction ID>",

"optVerifyStatus": "success",

“errorCode” : V7,

“reasonCode”: ™~

by
"signature": "<Encrypted and Signed response JSON>",
"checkSumval": "<Check sum value of complete payload>"

b) If OTP verification failed at bank end then response will be as below:

“otpVerifyStatus”: {
“transactionID” : “<Transaction ID>",
“optVerifyStatus”:”failure”,
“errorCode”:”"”,
“reasonCode” : <Reason Code>

I

“signature”:”<Encrypted and Signed response JSON>",

45 | Page

“checkSumval” : “<Check sum value of complete payload”

Failure Reason Reason Code
Bank OTP invalid AP39
Maximum tries exceeded for OTP AP40
Time expired for OTP AP41

Bank Aadhaar OTP Verification response failed | AP50

If OTP verification is successful only Bank needs to mark the mandate as accepted at their end. Until OTP
validation is passed the mandate would be in non-accepted state at the Bank end.

If OTP validation is failure User would be provided with option of reattempting OTP validation further 2
times. An alert message as below will be shown to the user. User can then proceed with entering the
correct OTP again and re-verify.

Request for Resend Bank OTP:

Parameters Datatypes Description

mandateAuthDtls JSON Object This will contains transaction Id
same which is sent in the first
generate bank OTP request and
encrypted aadhaar number

transactionID String transaction Id same which is sent
in the mandate request to bank.
ALPNUM String with
Length is 20.

aadhaarInfo JSON Object This will contains Encrypted
aadhaar number
aadhaarNo String Encrypted aadhaar number only

last four digit.

JSON Request:

{_
"aadhaarAuthDtls": {I=

"transactionID": "<Transaction ID>",
"aadhaarInfo": {I=
"aadhaarNo": "< Encrypted Aadhaar Number>"

}
}

< Response for Resend Request will be ‘200’ status code.

< If OTP verification is successful only Bank needs to register the mandate as accepted at their
end.

«» In case OTP verification fails in all the attempts bank can mark the mandate as rejected at their
end.

46 | Page

Bank will not generate any OTP, skip the OTP verification step and needs to mark the mandate as accepted
at their end.

Technical Integration requirement for Aadhaar Authentication
1.Connectivity:

Communication between NPCI to Bank Server with specific port
2. Certificates

X Bank SSL certificate(FQDNS)
X Bank Signing certificate

3.Keys exchange for UIDAI Authentication
Bank should share their AUA Keys

Bank has to share the keys as part of onboarding process, else we will use NPCI AUA Key

4.2.4 PAN/CUST ID authentication mode

ﬁl= @ ONMAGS) o)
. I

‘ I
-l
Corporates
+ 9 Destination Bank
$ \Z/
1
I.w

e A B pmmmmmm—————

=)

Customer

Step1l: Customer has initiated the request via Merchant Portal i.e., Web Browser

Step2: Customer will be redirected to ONMAGS Platform to enter the details required for PAN / Cust ID
authentication.

47 | Page

Step3: Customer enters PAN Number / Cust ID along with required details.

Step4: If the amount value of the mandate is greater than the defined value, then the flow ends here by
showing the error message in Merchant Portal

If the amount value of the mandate is less than or equal to the defined value, then the ONMAGS platform
will send the mandate request to destination bank.

Step5: Once mandate details and PAN/Cust ID details verified, bank will provide response bank to
ONMAGS. If the mandate details and PAN / Cust ID details verification is failed, bank will provide faliure
response to ONMAGS and same will be routed to merchant. The flow ends here.

Step6: Bank will send OTP to the registered mobile number of the customer.

Step7: Once mandate details and PAN / Cust ID details verified at bank successfully, he/she will be landed
on ONMAGS OTP page. ONMAGS will send an API request to customer’s Bank to verify the customer
details will generate the Bank OTP and send it to customer for Authentication.

Step8 : Customer will enter the Bank OTP in ONMAGS platform for Authentication. ONMAGS platform
will forward that OTP to destination bank for Verification.

Step9: If OTP verification is successful only Bank needs to mark the mandate as accepted at their end.
Until OTP validation is passed the mandate would be in non-accepted state at the Bank end.

Step 10: ONMAGS Platform in turn redirects the response to Merchant Web Page where customer can
view the response.

Auth mode: PAN/Cust ID

Privilege: Initiated by ONMAGS (NPCI)
API type: Sync

Request Type: JSON

HTTP Method: POST

Parameter Specification

Parameters Data Type Description

mandateAuthDtls JSON Object This will contains mandate
Request details and aadhaar
Info

48 | Page

transactionlD

mndtType

mandateRequestDtl

MandateRegDoc

CheckSumVal

authMode

paninfo / custidinfo

pan/custid

Mandate Request to Bank:

For PAN based authentication

49 | Page

String

String

JSON Object

String

String

String

JSON Object

String

This is used for the complete
transaction for mandate
registration. ALPNUM String
with Length is 20.

This will contain the operation
AMEND / CANCEL / SUSPEND/
REVOKE /CUSTOM_CANCEL.
mndtType will not be present
for Create Flow.

This will contains Encrypted
mandate Request Doc XML
and Encrypted checksum value

See below table for Mandate
Request Doc.

How to generate Checksum
value is mentioned above.

If Authmode is PAN, then user
will get user will get paninfo
JSON. If Authmode is CustID ,
then user will get user will get
custidinfo JSON

This will contains the PAN or
Cust ID based on the
authentication mode selection.

PAN/Cust ID of the user

"mandateAuthDtls": {

"transactionID": "<Transaction ID>",
"mndtType": "< AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL>",
"mandateRequestDtl": {

"MandateRegDoc": "<Encrypted and Signed request XML>",

bo

"authMode": "PAN",
"panInfo": {

"pan": "<Encrypted PAN>"

}

For Cust ID based authentication

"mandateAuthDtls": {

"transactionID": "<Transaction ID>",
"mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL>",
"mandateRequestDtl": {
"MandateRegDoc": "<Encrypted and Signed request XML>",
b
"authMode": "custid",
"custidInfo": {
"custid": "<Encrypted custid>”

e mndtType will not be present for Create Flow
e Unencrypted and Unsigned request XML for MandateReqDoc Key is similar to New debit and
aadhaar authentication mode:

Bank needs to first verify the mandate request details

a) If the destination bank is unable to parse the mandate request it will send the response in the
below format. Bank need not validate the PAN/Cust ID details if sending failure response
(because of request XML validation failure at bank end).

Parameters Datatypes Description
mandateVerifyDtls JSON Object Mandate verify details contains
transaction ID, mandate

Validation and mandate reject
details

transactionlD String This is the same transaction ID
which Is passed in request for

50 | Page

mndtType

mandateValidation

panValidation / custidValidation

mandateRejectDtl

ErrorCode

ErrorDesc

signature

checkSumval

String

String

String

JSON Object

Integer

String

String

String

Error Response from Bank for Mandate request:

For PAN authentication mode

{

"mandateVerifyDtls": {

"transactionID":

51 | Page

"<Transaction ID>",

mandate registration. ALPNUM
String with Length is 20.

This will contain the operation
AMEND / CANCEL / SUSPEND/
REVOKE /CUSTOM_CANCEL.
mndtType will not be present
for Create Flow.

This will return either success
or failure.

This will return either success
or failure.

This will contain error code and
error desc

This will be between 000 to 999

This will be the corresponding
error description for the error
code.

The Response payload will be
signed with bank’s private key
and algorithm used as
RSA_USING_SHA256

Generate checksum on the
entire payload. We will use
SHA-2 as the hash function

"mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL>",
"mandateValidation": "failure",
"panValidation": "none",
"mandateRejectDtl1": {
"ErrorCode": "<Error Code>",
"ErrorDesc": "<Error Description>"
}
}I
"signature": "<Encrypted and Signed response JSON>",
"checkSumval": "<Check sum value of complete payload>"

For Cust ID based authentication

"mandateVerifyDtls": {
"transactionID": "<Transaction ID>",
"mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOMﬁCANCEL>",
"mandateValidation": "failure",
" custidvValidation ": "none",
"mandateRejectDtl": {
"ErrorCode": "<Error Code>",
"ErrorDesc": "<Error Description>"
}
b
"signature": "<Encrypted and Signed response JSON>",
"checkSumval": "<Check sum value of complete payload>"

Note:-

Attribute values Mandate Validation, PAN/CustID Validation, Error Code & ErrorDesc needs to be
encrypted. Bank needs to encrypt using NPCI public key.

b) If destination bank is able to successfully parse the mandate request XML but business
validation of XML fails, then bank needs to send the response in the below format. PAN/Cust ID
details need not be validated in such a scenario.

For PAN authentication mode

"mandateVerifyDtls": {

"transactionID": "<Transaction ID>",
"mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOMﬁCANCEL>",
"mandateValidation": "failure",
"panValidation": "none",
"mandateRejectDtl1l": {
"ReasonCode": "<Reason Code>",
"ReasonDesc": "<Reason Description>"
}
b
"signature": "<Encrypted and Signed response JSON>",
"checkSumvVal": "<Check sum value of complete payload>"

52 | Page

For CustID authentication mode

"mandateVerifyDtls": {
"transactionID": "<Transaction ID>",
"mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL>",
"mandateValidation": "failure",
"custidvalidation": "none",
"mandateRejectDtl": {
"ReasonCode": "<Reason Code>",
"ReasonDesc": "<Reason Description>"
}
b
"signature": "<Encrypted and Signed response JSON>",
"checkSumval": "<Check sum value of complete payload>"

Note:-

Attribute values Mandate Validation, PAN Validation/Custid validation, Reason Code,Reason
Desc & checkSumVal needs to be encrypted

c) Validation at banks

» For PAN authentication mode PAN of debtor should match with the “PAN linked with the
Debtor AccNo” provided in the mandate Request XML

If the above validation fails, then the bank needs to provide the response as above format
2" type.

"mandateVerifyDtls": {
"transactionID": "<Transaction ID>",
"mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM7CANCEL>",
"mandateValidation": "success",
"panValidation": "failure",
"mandateResponseDtl": {
"accptRefNo": "<Accept Reference Number>",
"dbtrIfsc": "<Debtor IFSC>",
"dbtrAcctType": "<Debtor Account Type>"
by
" panRejectDtl ": {
"ReasonCode": "<Reason Code>"
}

by
"signature": "<Encrypted and Signed response JSON>",

"checkSumval": "<Check sum value of complete payload>"

}

> For Cust ID authentication]mode\[DGu

If the above validation fails, then the bank needs to provide the response as above format 2™

type.
"mandateVerifyDtls": {

53 | Page

"transactionID": "<Transaction ID>",

"mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL>",
"mandateValidation": "success",
"custidvalidation": "failure",
"mandateResponseDtl": {
"accptRefNo": "<Accept Reference Number>",
"dbtrIfsc": "<Debtor IFSC>",
"dbtrAcctType": "<Debtor Account Type>"
b
" custidRejectDtl ": {
"ReasonCode": "<Reason Code>"
}
b
"signature": "<Encrypted and Signed response JSON>",
"checkSumval": "<Check sum value of complete payload>"

}
If all the above validation passes then the bank needs to provide the success response as below:-

d) Success Response for Mandate request to Bank:

For PAN authentication

"mandateVerifyDtls": {
"transactionID": "<Transaction ID>",
"mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL>",
"mandateValidation": "success",
"panValidation": "success",
"mandateResponseDtl": {
"accptRefNo": "<Accept Reference Number>",
"dbtrIfsc": "<Debtor IFSC>",
"dbtrAcctType": "<Debtor Account Type>"
br
"panVerifyDtl": {

"successCode": "<Success Code>"
}
}s
"signature": "<Encrypted and Signed response JSON>",
"checkSumval": "<Check sum value of complete payload>"

For Cust ID authentication

"mandateVerifyDtls": {
"transactionID": "<Transaction ID>",
"mndtType": "<AMEND / CANCEL / SUSPEND/ REVOKE /CUSTOM CANCEL>",
"mandateValidation": "success",
"custidValidation": "success",
"mandateResponseDtl": {
"accptRefNo": "<Accept Reference Number>",
"dbtrIfsc": "<Debtor IFSC>",
"dbtrAcctType": "<Debtor Account Type>"
by
"custidVerifyDtl": {
"successCode": "<Success Code>"
}
b
"signature": "<Encrypted and Signed response JSON>",

54 | Page

"checkSumVval": "<Check sum value of complete payload>"

Note:-
iii. Attribute values mandateValidation, panValidation/custidValidation, AccptRefNo
successCode &b checkSumVal needs to be encrypted.
iv. Bank needs to store the mandate details received along with the transaction ID for the

subsequent OTP validation.

For scenarios (a), (b) and (c) ONMAGS will construct the merchant rejection response and redirect to the
merchant. Bank needs to mark the mandate as rejected at their end for these scenarios. For scenario (d)
if bank has opted for OTP validation then mandate status will be “In Process” for the bank until the OTP

verification is completed, else mandate status will be “Accept” and send the response back to ONMAGS.

For scenario (d) ONMAGS will redirect to the OTP verification page.
Below are the steps to be done for securing the content of the Response JSON:

4. Generating checksum for the secure information in the Response JSON (Mandate and Pan
validation/Cust Id validation)

The below attributes need to be concatenated for the purpose of generating Checksum:

Transaction ID
Mandate Validation
Accepted Ref No.
Dbtr Account type
Dbtr IFSC
Reason Code
Reason Desc
Error Code
. Error Desc
Pan Validation / Cust Id validation
Success Code
. Aadhaar Reason Code
AA. Aadhaar Error Code
BB. JSON Web Signature

N<xs<cHvw=®pmDO

5. Generating checksum for the secure information in the Response JSON (OTP Validation)

The below attributes need to be concatenated for the purpose of generating Checksum:

55 | Page

Transaction ID
Verify Status

Error Code

Reason Code

JSON Web Signature

- - T o m

The above attributes need to be concatenated with “|” symbol appended as the delimiter. The order of
the attributes needs to be as mentioned above.
Note:
The attributes to be concatenated might be changed at a later point of time. Please refer the
latest version of the document for any revision on the attributes that needs to be marked for

Generate checksum on the concatenated values. We will use SHA-2 as the hash function.
6. Signing of the Response JSON
® The complete response we are going to use as a payload.
® The response JSON has to be signed using the Private Key certificate of the Bank.

e Json Web Signature is used for generating digital signatures and the same will
be validated at the NPCl end.

Note :

® Except transaction ID, Dbtr Account Type and Dbtr IFSC field, all the fields are encrypted. For
generating checksum, we are going to use encrypted values. If value is not present in response,
then we will use empty string for that key.

® Since we are using Signature value while generating Checksum, so that first we need to sign the
response then generate checksum

Bank OTP Verification Request for Same Mandate request:

Parameters DataTypes Description

otplnfo JSON Object This will contains the
transaction Id same used in
OTP generation and Encrypted
OTP which is received on
registered mobile in bank

56 | Page

transactionlD String Same transaction ID used in
mandate request to bank.
ALPNUM String with Length is
20.

otp String Encrypted OTP received on
registered mobile in the bank.
Length is 4.

"otpInfo": [
{_
"transactionID": "<Transaction ID>",
"otp": "<Encrypted OTP Value>"

® In case of retry as well the request will be posted to bank in the above mentioned format
only.

The encryption on the OTP will follow the existing encryption methodology. Bank needs to decrypt the
OTP and verify it based on the transaction ID. The OTP verification status needs to be sent in the below
json format by the bank.

Response From Bank for Bank OTP Verification for the same Mandate request:

Parameters DataTypes Description

otpVerifylInfo JSON Object This will contain the same
transaction Id which is sent in
mandate request to bank and
encrypted status as success or
failure.

String Transaction Id is the same Which
is sent in verify request bank OTP.
ALPNUM String with
Length is 20.

optVerifyStatus String Encrypted OTP verification status.

It will be either success / failure

transactionID

e) If OTP verification at bank end is success then the response will be as below:
{ =

"otpVerifyInfo":
{_
"transactionID": "<Transaction ID>",
"optVerifyStatus": "success",
“errorCode” w
“reasonCode”: “”

57 | Page

b
"signature": "<Encrypted and Signed response JSON>",

"checkSumval": "<Check sum value of complete payload>"

f) If OTP verification failed at bank end then response will be as below:

{
“otpVerifyStatus”: {

“transactionID” : “<Transaction ID>",
“optVerifyStatus”:”failure”,
“errorCode”:”",

“reasonCode” : <Reason Code>

}I
“signature”:”<Encrypted and Signed response JSON>",

“checkSumvVal” : “<Check sum value of complete payload”
}

Failure Reason Reason Code
Bank OTP invalid AP39
Maximum tries exceeded for OTP AP40
Time expired for OTP AP41

If OTP verification is successful only Bank needs to mark the mandate as accepted at their end. Until OTP
validation is passed the mandate would be in non-accepted state at the Bank end.

If OTP validation is failure User would be provided with option of reattempting OTP validation further 2
times. An alert message as below will be shown to the user. User can then proceed with entering the

correct OTP again and re-verify.
Request for Resend Bank OTP for PAN authentication mode:

Parameters Datatypes Description

mandateAuthDtls JSON Object This will contains transaction Id
same which is sent in the first
generate bank OTP request and
encrypted aadhaar number

transactionID String transaction Id same which is sent
in the mandate request to bank.
ALPNUM String with
Length is 20.

panInfo JSON Object This will contains Encrypted PAN

pan String Encrypted PAN

JSON Request:

(B
"mandateAuthDtls": {E
"transactionID": "<Transaction ID>",
"panInfo": {[E
"pan": "< Encrypted PAN Number>"

}

58 | Page

Request for Resend Bank OTP for CustID authentication mode:

Parameters Datatypes Description

mandateAuthDtls JSON Object This will contains transaction Id
same which is sent in the first
generate bank OTP request and
encrypted aadhaar number

transactionID String transaction Id same which is sent
in the mandate request to bank.
ALPNUM String with
Length is 20.

custidInfo JSON Object This will contains Encrypted
custid
custid String Encrypted custid

JSON Request:

{ |
"mandateAuthDtls": {I=

"transactionID": "<Transaction ID>",
"custidInfo": {I=
"custid": "< Encrypted PAN Number>"

}

< Response for Resend Request will be 200’ status code.
< If OTP verification is successful only Bank needs to register the mandate as accepted at their
end.

% In case OTP verification fails in all the attempts bank can mark the mandate as rejected at their
end.

4.3 Signing and Encryption process
Below is the process for encryption & signing during the various flows.
> NPCI to Bank
< Encryption will be done using the Public Key of the certificate shared by Bank.
< Signing Using Private key certificate of NPCI
> Bank to NPCI
< Encryption will be done using the Public Key of the certificate shared by NPCI.

< Signing Using Private key certificate of Bank

59 | Page

4.4 Encoding Guidelines

The request XML & response XML posted to NPCl and received from NPCl should in encoded format. As
part of encoding specific characters would be replaced by escaped character of those.

Spelled Escaped Character
‘ Single Quotes '
“ Double Quotes "
& Ampersand &
< Less Than <
> Greater Than >

5. Response through Offline Server to Server Communication

To account for online failures, the response from Bank to NPCl needs to be sent using server to server
communication as well.

NPCI will expose an API for accepting server to server communication from Bank. Bank needs to invoke
this URL for posting response through server to server communication.

Note:

> Since communication is received both by browser redirection & server to server call, NPCl would
mark the status of the transaction based on the first response received. The second
communication received would be ignored.

> Error Code & Error Description list will be shared by NPCI.
5.1 Handling of Time out / not reachable Scenarios

During the entire flow time out can happen at various stages. The following timeouts needs to be
maintained at individual levels across the participating entities.

60 | Page

Flow

NPCI to Bank

61 | Page

Auth Mode/Request

Old Net Banking/Debit
Card

New Debit Card — Submit
Card Details

New Debit Card — OTP
Verification

Aadhaar Authentication —
Aadhaar verification by
UIDAI

Aadhaar Authentication —
Aadhaar OTP
Authentication

Aadhaar Authentication —
Account verification by
Bank

Timeout

30Min

90 Sec

90 Sec

90 Sec

90 Sec

90 Sec

Remarks

No response from Bank for original
request & for 3 subsequent sync requests.
Request will be marked as timed out at
NPCIl. (merchant can use Status API to
know the status of the request)

No response from Bank for original
request & for 3 subsequent sync requests.
Request will be marked as timed out at
NPCI and user will be redirected to
merchant site with appropriate error code

No response from Bank for original
request & for 3 subsequent sync requests.
Request will be marked as timed out at
NPCI and user will be redirected to
merchant site with appropriate error code

No response from UIDAI for original
request. Request will be marked as timed
out at NPCl and user will be redirected to
merchant site with appropriate error code

No response from Bank for original
request & for 3 subsequent sync requests.
Request will be marked as timed out at
NPCI and user will be redirected to
merchant site with appropriate error code

No response from Bank for original
request & for 3 subsequent sync requests.
Request will be marked as timed out at
NPCI and user will be redirected to
merchant site with appropriate error code

Aadhaar Authentication— 90 Sec No response from Bank for original
Bank OTP Authentication request & for 3 subsequent sync requests.
Request will be marked as timed out at
NPClI and user will be redirected to
merchant site with appropriate error code
Explained below are the actions taken at NPCI ONMAGS layer for timeouts happening at various levels.
> NPCI to Bank

Scenario-1: Destination Bank not reachable

Action: The request will be auto closed as Failed at NPCI end after the specified duration.
Merchant will be shown respective error code.

> Bank to NPCI
Scenario-1: Bank has not responded to NPCI within the timeout period.

Action: NPCI will send list of transactions for which communication is not received from Bank at
periodic interval. Once the pre-defined cut off time for the transaction is reached the transaction
would be marked as “No Response from Bank” auto closed.

Scenario-2: Bank sends response to NPCl after the timeout period

Action: Any response after the time out period would be ignored by NPCI ONMAGS. The
transaction would be treated as no response from Bank and the action for Scenario-1 would be
followed.

Scenario-3: Bank sends invalid response to NPCI within the timeout period

Action: NPCI ONMAGS will mark the transaction as “Invalid Response from Bank” and
corresponding Response XML with applicable error code will be send to Merchant.

Scenario-4: Bank is unable to reach NPCI.

Action: Bank needs to communicate the response to NPCI using server to server call. NPCI will
update the transaction status at our end. (applicable only for net banking & Old debit card Flow)

5.1.1 JSON Response Formats
Given below are the JSON Response formats for Server to Server Communication.

Note:

62 | Page

Error Response XML would be shared in case the original request is not readable.

5.1.1.1 Bank to NPCI (Success & Business Rejections)

{
"bankResponseDtl": [
{
"BANKID":"<Participant ID of the Bank in NACH>",
"MandateRespDoc" : "<Encrypted and Signed response XML>",
"CheckSumval":"<Check sum value of secure attributes>",
"RespType": "RespXML"
}
]
}
5.1.1.2 Bank to NPCI Error Response (Technical Rejections)
{
"bankResponseDtl": [
{
"BANKID":"<Participant ID of the Bank in NACH>",
"MandateRespDoc": "<ErrorResponse XML>",
"RespType" :"ErrorxMmL"
}
]
}

6. API services

6.1 API to get Transaction Status for Banks

For the purpose of getting the transaction status of a particular transaction or group of transactions for
Banks, NPCI ONMAGS would expose a rest service which will accept list of NPCI Transaction Reference
Numbers in JSON format. The response of this APl will also be in JSON Format. There will be a limitation
on the number of items posted per request. Currently the limit is set as 50.

Sample Input JSON:

{

"npcirefmsglID":[

63 | Page

"000f0f29dc27f00000101b09c5227457f17",
"000f0f29dc27f00000101b09¢c5227457E23",

"000f0f29dc27f00000101b09¢c5227453542"

}

Sample Output JSON:
{
"tranStatus ":[

{
"npcirefmsglID":"000f0f29dc27f00000101b09¢5227457f17",
"Accptd":"false",
"AccptRefNo":"tranid3432kkkeke",
"Mndtld": " XXXXXXXXXXXXXXXXX
"ReasonCode":"343",
"ReasonDesc":"Invalid Account",
"RejectBy":"Bank",
"ErrorCode":"000",

"ErrorDesc":"NA"

"npcirefmsgID":"000f0f29dc27f00000101b09c5227457E23",
"Accptd":"true",
"AccptRefNo":"tranid352254221",

"Mndtld": " XXXXXXXXXXXXXXXXXXXX ",

64 | Page

"ReasonCode":"000",
"ReasonDesc":"NA",
"RejectBy":"NA",
"ErrorCode":"000",

"ErrorDesc":"NA"

"npcirefmsgID":"000f0f29dc27f00000101b09c5227453542",
"Accptd":"NULL",

"AccptRefNo":"NULL",

"Mndtld":"NULL",

"ReasonCode":"NULL",

"ReasonDesc":"NULL",

"RejectBy":"NULL",

"ErrorCode":"452",

"ErrorDesc":"No Details available for the requested parameters. Please check the values provided"

In case the details provided in the request are invalid then ErrorCde & ErrorDesc will have the
corresponding error code & description. For the valid request ErrorCode would be “000” and
“ErrorDesc” would be “NA”.API URL would be of the below format:

https://enach.npci.org.in/apiservices/getTransStatusForBanks

UAT:

65 | Page

https://enach.npci.org.in/apiservices/getTransStatusForBanks

https://103.14.161.144/8086/apiservices/getTransStatusForBanks

6.2 API for posting list of Open Transactions to Bank
[J
e NPCI will post the open transaction (transaction for which response has not been received from
Bank end) to Bank at predefined interval. Bank should expose a listener for accepting the
request from NPCl and send response in the same request (Synchronous). In the request NPCI
provide either Mndtld or NpciRefMsgID or Both as a input, bank ready to accept the input and
provide details as mentioned in the below format.

X Request:
{
"openMandateTrans": [
{
"MNdTtId" : " XXXXXXXXXXXXXXXXXKXXX ",
"NpciRefMsgID": "000f0f29dc27f00000101b09c522743SK65"
}
]
}

For the open transaction bank needs to provide the response in the same request mentioned in the below
Note:
Bank needs to provide the APl URL for accepting this request which should accept the above JSON format.

Given below are the JSON Response formats.

Bl Success Response

{
"bankResponseDtl": [
{
"BANKID":"<Participant ID of the Bank in NACH>",
"MandateRespDoc": "<Encrypted and Signed response XML>",
"CheckSumval":"<Check sum value of secure attributes>",
"RespType":"RespXML"
}
]
}

66 | Page

https://103.14.161.144/8086/apiservices/getTransStatusForBanks
https://103.14.161.144/8086/apiservices/getTransStatusForBanks

Error Response

Error Response XML would be shared in case the original request is not readable or in case they
didn’t receive any request for the given npcirefmsgid.

{
"bankResponseDtl": [
{
"BANKID":"<Participant ID of the Bank in NACH>",
"MandateRespDoc": "<ErrorResponse XML>",
"RespType":"ErrorXmL"
}
]
}

6.3 HEART BEAT API

ONMAGS system will check the LIVE status of the Banks for particular interval. ONMAGS will send the
HTTPS request to banks and in the same request banks give the response (Synchronous).

The request and response structure below.
For Banks

Banks can provide “Live” as response to NPCl only if banks can process the APl E-Mandate successfully at
their end. Assume if banks requires more than one service to successfully register a mandate, banks
should check the availability of all services and provide “Live”. Even if one service is not working, the
response should be provided as “Not live”.

6.3.1 Request:

The request will be in the Json format to their respective shared URL’s

{

"action":"HEART BEAT REQUEST",

"data":

{

"server_status":"ALIVE",

"current_time":"2019-11-04T09:09:09"

67 | Page

}
}

6..3.2 Response:

{

"action": " HEART BEAT RESPONSE",
"data": {

"status": "ALIVE",
"current_time":"2019-11-04T09:09:09"
}

}

7. Appendix

7.1 Request & Response XML Specification for Banks

Validation Sheet Bank

Validation sheetxlsx

7.2 Sample XML Formats and Schemas

Request Response
Files_V9.zip

7.3 Error Codes

ErrorCode - Bank

68 | Page

https://drive.google.com/file/d/1-OC4DkWSUws_d0vJhd_kRTsNqtKpjlhT/view?usp=drive_web
https://drive.google.com/file/d/1t4ioAPoC6k6iYI71p_OHJWnu22IAabsB/view?usp=drive_web

Error codes.xIsx

7.4 Bank Reject Reason codes

Bank_Reject_reason
_codesxls

7.5 Guidelines and design for Netbanking page, Debit Card and corporate

page
Bank page - API Bank page - API Implementation
E-Mandate - Intemne E-Mandate - Debit ¢ guidelines for Corpt

7.6 Logic for generating JSON Web Signature (JWS)
W
JWS_logc_Aadhaar.d
ocx

7.7 Checksum login for bank response to NPCI

7.7.1 CheckSum Logic for Mandate Validation

Generating Checksum with concatenating below fields

txnId + "|" 4+ mndtValidation + "|" + acceptRefNo + "|" + dbtrAccType + "|" +
dbtrIfsc + "|" + reasonCode + "|" + reasonDesc + "|" + errorCode + "|" +
errorDesc + "|" + aadhaarValidation + "|" + successCode + "|" +
aadhaarReasonCode + "|" + aadhaarErrorCode + "|" + signature value

Before check sum Hashing example

ONMG7032712190068010|U/jQgxdNd4WsN
AvUYZGmvtxO7ul3pweD7Wstz7GGAdCMmiokzavwiISStlmagwXE6QFwAYyktVFomgAMOQHCFUU/76t1iZ
5BXb0uaBxID2PXbYXzhxf28alhQPJrztfBYoh7cMKoamLMvZOaroFoPImM1IdhIfBvObzLObS{fWByY
BmufvgozdXWXU7

69 | Page

Bm0Z1ntujzZ2Z6XrdWTVFrG15XaJDDw84CfkEjgklI1kJuC63hhWANXRN7kTVgjdcdtmczH7GgoJNs
RF3zirTLoJjZJh02304J505pcsDEeKIUMxtUPFMAMImOuAz7zYJRPVc1DQwCKSIgdmU433GIMxyh
GlhcmHQ==|st1lX
m8hMcQoHfKugGtWQKCGbeqyzsH1uKp/ocK0jsQ63p569uiWZdGnILKbv5f5vxdZtXFGDFrnC3r3g4
/ORp0O3AGITRPCzMX52zETn4d4jwT1+/ujy32zG31idDJUK191LNOMNOmjnT90abiWa3/k4UzZztesWv8
vASfVijyO7GO0Z5E
F1IWFjj18Xpv7oWea9J0x20EK9UbyVaMD14JF0zNxI11045LDHY/IIDn/UB/mZ/EUm6yHHsXzmKub
m9qyWo4NejXnkp9yy9cJI3dVlsApod410LUmbZiwyKgNfU+WOV4PwBeWvDzYu6ZCib3gbxniZsDekw
K+vn6FnhNzrXtl

VA==|DEBIT|508548| ||| |[MNnjhDntjQahfKVLDnaech9LEGf+v2+tIGmyOs/jHce9AgtxF1gyTQE
0tD131LeAOcmYghJdbfc+e8vlryhauw0B81l5uvvad4u3GUEvDxoIbId4Xnjz30c/1UdMcdrI453mtn3
J0sEBpRhkMMWyH

V53T4yRAWco] 6+40GKtZWw2bpS1lYjZrgLjoXAvdgDpvN+rsSdIrUgWg8eFeuDkWTJZo9vOnYHt 6pR
gkKwSgzUgzcjrYej5£fm/5NkI14GIwYBOhjOW60UNn0rchopWLIMLI ImxgNAHIG64hyg9UtI8KG6eWAhE
ILm3yEKuzZLgGbSm
200K4wBMHBK1zSbPXcycCDJUOLiA== | GhgMgyEVKMHYE1VD/OFScgkyhBplAOQgLIPJINS8jgHCkksb
FOJDO4TFDgHebn77H0ejPMB38SBCIGAO5JAaib3bISiux0C5dpRrUgpPEIJX50ETIInDCH)iMaIJjb
JmzCeEMULVTV27
YCIJGKLVEZ+2JTrKHhQWOx03rHLr50A2aV+AYIGGDWdwQHXJuo0FeJvZZscexMutacNgANLDgJLpS
rTygFiTrOg5ruYRhLa8ZrSfb3MW+DeyHiveHbj21QwMsCl/1v7GqgrrzZ5PyFPUOHFxON2RAWVUEpPK
UECFmWe+1bLp3u
L/Dml1StUQoLEwW/rF/KTX2D/A0tKJI3NKU86r3Q==| | |eyJhbGci01JSUzUxMi1iJ9.eyJtYW5kYXR1Vm
VyaWZ5RHRscyI6eyJO0cmFuc2FjdGlvbklEIjoiUOFNUEXFMDASOVVNUk41LCIJtYWS5kYXR1IVmEsaWR
hdGlvbiI6IlUva
1FneGROZDRXc05Bd1VZWkdtdnR4Tzd1M3B3ZUQ3V3NOeJdHR2RDTWlpb2t 6YXZ3aUpTU3RsbWEndl
hFN1FGAOF5a3RWRMOtZOFNMFFIQ0ZVAS83NnRpWjVCWGIwWAWEFCeE1EMIBYY11Yemh4ZjI4YTFoOUVB
Kcnp0z2kJZb2g3Y
01Lb2FtTE12Wk9hcm9Gb1BIbUOXSWROSWZCdAdk91ekxPYINMVOJI50m11Z2nZxb3pkWFAYVTdCbTBabG
50dWp6W1o02WHIkVIRWRNIJHMTVYYUPpERHC4ANENmMaOVgZ2tsSTFrSnVDNjNoaFdBbnhSTjdrVEZnamR
JZHRtY3pINOdnb
0pOclJIGM3ppclRMbOpgikpoTzIzTzRKNU81cGNZREV1S01VTXhOVVBGTTRNMWOwdUF 6N3pZalJQvm
NsREFF3Q0tTSXFkbVUOMzNHSk14eWhqRzFoY21TIUT09IiwiYWFkaGFhclZhbGlkYXRpb24101iJINTm5S
qgaERudGpRYWhmS1ZMRGS5hZWNoOUxFR2YrdjIrdE1HbX1Pcy9qSGN1OUFndHhGbGd5VFFFMHREbDMx
TGVBT2NtWWdoSmImYyt1O0HYxcnloYXV3MEI4bDV1dnZhNHUzZRIVFdkR4b011iSWQOWGS5gWiMwYy9sV
WRNY2RySTQ1M210bjNKMHNFONBSaGtNTVASSFY1IM1Q0eVIBV2NvajYrNGI9HS3RavV3cyYnBTMV1gWn
InTGpVWEF2ZGdECHZOK3JzU2RJc1VxV2c4Z2UZ1dURrVIRKWmM85dk 9uWUhONNnBScUt3U2daVXF6Y2p
YWWVNWZtLzV0a0kxNEAKA11CMGhqUVc2T1VuMHIJaGI9wVOwSTTFIJbXhnTkFIMUC2NGh5Zz1VdEk4
S0c2ZVdBaEVMbTNS5RUt 1WkxxR2JITbTIwUUsO0dOJINSEJLbHPpTY1BYY31jQO0RKVUIMaUE9PSIsImlhb
mRhdGVSZXNwb25zZ2UR0bCI6eyJhY2NwdFJ1Z2k5vIjoic30xWG04aE1jUW9IZkt1cUdOVIFLQOdiZX
F5enNIMXVLcCOvYOtPanNRNJNwNTYS5dWIXWmRHbkIMS2J2NWY1dnhkWnRYRkAERNJuQzNyM2c0L29
ScDAzQUAKVEFJIQQ3pNWDV6RVRUNGQ0andUbCsvdWp5SM3pHM2 1 kREpVZkt sOTFMTJBtTjBtam5U0USh
Ym1XYTMvazRVWNnp0ZXNXdjh2QVNmVmp5TzdHMFolRUZsSVdGamoxOFhwdjdvV2VhOUoweDIwWRUs5V
WISVMENRGWOSkYwek54SWxsbzQlTERIOS9JSURUL1IVCL21aL0VVbTZ5SEhzWHptS3VibT1lxeVdAdvNE
5lalhua3A5eXk5Y00zZFZscO0Fwb2Q0MTBMVW1 iWml3eUtnTmZVK1c5ViRQA0J1V3ZEell1NlpDaWl
z22J4bmlacOR1a3dLK3ZuNkzZuaE56clhOMVZBPTO0iLCIkYnRySWZzYyI6IjUwODUOOCIsImRidHJIB
Y2NOVHIwZSI6IkRFQk1IUINO0sImFhZGhhYXJWZXJpZnlEdGwiOnsic3VjY2VzcONvZGUi01iJHaGdANZ
31FVktNSHIFbFZELO9GU2NNa310QnAxQUIRcUxJUEPpOOGPNSENra3NiRkOKRESOVEZEcUh1Ym43NO0
gwZWpQTUIzOFNCQOpxQU81SkFhamIzYkpTaXV4MEM1ZHBSclVncFBEFS1glTOVUSMXuURENIamlNYUL
KamJKbXpDZUVNVWxWVEYyN11DSWpHSOxWZ1orMkpUckt IaFFXUXgwM3JITHIITOEYYVYrQV1JR3FE
V2R3UUhYSnVVMEZ1SnZaWnNjZXhNdXRhY05nQUSMRGAKTHBTc1R5cUZgVHIPCcTVydV1SakExhOFpyU
27ZiMO01XKOR1eUhpdmVIYmoybFF3TXNDMS8xdjdHcXJyelolUHIGUFUWSEZ4b04yUkFXVnVECEtLVRU
NGbVd1lK2x1iTHAZzdUwVRG1sU3RVUWIMRXcvckYvSIRYMkQvQOTBOS00zTktVODZyM1IESPSJ9£X0.hgB
gdsH9qgzksjuzJIpfIMBkV--

70 | Page

XUPEMNniBmt Jk5P6glWGuckSTKWh6LnUVNN801oTfDFIWNQXzFaVRJov24DVaWdpxgLO0RHYQHOWw2
5ByydKv5xBj37cNOmjPBDxgFOVGAYAL1717n0wJINQC—
8v14LZ2txPzfKhGOJXASToPYcdUSOwL2c4gYjkIxKn aDl1YfoFMWWnYwgU4U7QAIDfr9AHhhPQCD
XK-CSMXy2GJOUwDmbUtpVzYyi3-

t3xtt4WFfub6HLSt 5cacNbrCrcDCyHDnIJ60G32NKngXV7MhYC-
5m2BQOQQbPLHCoHbggmMwN4Dpb2bZTuF4J0ISVPBQ

After checksum hashing SHA 256

654940560c978580c88c0f96f805fff653741be7ceel4feba3cd92377d1533a0

Encrypting the checksum with NPCI public key

hBbotAWO67zN/RAYY++PFybVFoBBo80o3phhfriwx6AnFv3/CuAVp730/X0awterQVp42N+JblYOypr
NNLk1sgGgQRZZ+C7KBeyG8BBgZOAOX5wveBhDQHUs/Kv8zQwlMLjOkmrdgzW1lKrgfCw4ACTtsE6+T
Jyp5cnZvEiMp9aM43t9r0SGvzr7ivuSPzgYB8agJkAROWkDQ3Sd67BG40vvzOVyxRV1ilky4bkRmMZ
Z+Y1cEVGoynR4M1isxDrg/rcC3FPI3LpQZJ/bz+zaAl04dFduChLn9d82vZiBoJ3tgupSwltsSkHD
lyisAadzyki30TD4P22JAt23I1ifgQclJjg==

Final Response with signature and checksum:

{
"mandateVerifyDtls": {

"transactionID": "ONMG7032712190068010",

"mandateValidation":
"U/3QgxdNd4WsNAvUYZGmvtxO7u3pweD7TWstz7GGdCMmiokzavwiJISStlmagwXE6QFwAyktVEFomgAMOQHCFUU/76t1Z25BXb0u
aBxID2PXbYXzhxf28alhQPJrztfBYoh7cMKoamLMvZOaroFoPImM1 IdhIfBvObzLObSfWByBmufvqozdXWXU7Bm0Z1lntujzZz
6XrdWIVFrG15XaJDDw84CfkEjgklI1kJuC63hhWANxXRN7kTVgjdcdtmeczH7GgoINsRF3z1irTLoJjZ2Jh02304J505pcsDEeKIU
MxtUPFM4M1mOuAz7zYJRPVc1DQWCKSIgdmU433GIMxyhjGlhecmHQ=="",

"aadhaarValidation":
"MNnjhDntjQahfKVLDnaech9LEGf+v2+tIGmyOs/JjHce9AgtxF1gyTQEOtD131LeAOcmYghdbfc+e8vlryhauw0B815uvvadu
3GUEVDx0IbId4XnjZ30c/1UdMcdrI453mtn3J0sEBPpRhKkMMWYHVS53T4yRAWCO] 6+40GKtZWw2bpS1YjZrgLljoXAvdgDpvN+rs
SdIrUgWg8eFeuDkWTJZo9vOnYHt 6pRgKwSgZUgzcjrYej5fm/5NkI14GIwYBOhjQW60Un0rchopWLOMI ImxgNAH1G64hyg9Ut
I8KG6eWAhELm3yEKuUZLgGbSm200K4wBMHBK1 zSbPXcycCDJUOLiA==",

"mandateResponseDtl": {

"accptRefNo":
"st1Xm8hMcQoHfKugGtWQKCGbeqyzsH1uKp/ocKOjsQ63p569uiWzZdGnILKbv5f5vxdZtXFGDFrnC3r3g4/oRp03AGITRPCzZM
X5zETn4d43wT1+/ujy32zG3idDJUfK191LNOmMNOmjnT90abiWa3/k4UZztesWv8vASEVIyO7GOZ5EF1IWEF]j18Xpv7oWeadd0x
20EK9UbyVaMD14JF0zNxI11045LDHY9/IIDn/UB/mZ/EUm6yHHsXzmKubm9qyWo4NejXnkp9yy9cJ3dVlsApod410LUmbZiwyK
gNfU+WIOV4PwBeWvDzYu6ZCib3gbxniZsDekwK+vnoFnhNzrXt1VA==",

"dbtrIfsc": "508548",

"dbtrAcctType": "DEBIT"

} r

"aadhaarVerifyDtl": {

"successCode":

"GhgMgyEVKMHYE1VD/OFScgkyhBp1AOQQLIPJINS8]gHCkksbFOJDO4TFDgHebn77H0ej PMB38SBCIGAO5JAajb3bJISiux0C5dp
RrUgpPEJX50ETJ1InDCH]iMaIJjbJImzCeEMULVTV27YCIjJGKLVEZ+2JTrKHhQWOx03rHLr50A2aV+AYIGgDWAdwQHXJuo0FeJvZ
ZscexMutacNgANLDgJLpSrTygFjTrOg5ruYRhLa8ZrSfb3MW+DeyHiveHbj21QwMsCl/1v7GqrrzZ5PyFPUOHFxON2RAWVUED
KUECFmWe+1bLp3uL/DmlStUQoLEwW/rF/KTX2D/A0tKJI3NKU86r3Q=="

}

} r

"checkSumval":
"hBbotAWO67zN/RAYY++PFybVFoBBo803phhfriWx6AnFv3/CuAVp730/X0awterQVp42N+JblY0yprNNLk1sqGgQRZZ+C7KBe
yG8BBgZOAOX5wveBhDQHUs /Kv8zQwlMLjOkmrdgqzW1lKrgfCw4ACTtsE6+Tjyp5cnzvEiMp9aM43t9r0SGvzr7ivuSPzqYB8agd
kAROWkDQ3Sd67BG40vvzOVyxRV1ilky4bkRmMZZ+Y1cEVGoynR4M1isxDrg/rcC3FPI3LpQZzJ/bz+zaAl04dFduChln9d82vz
1BoJ3tgupSwOtsSkHDlyisAa4zyki30TD4P22JAt2SIifgQclIjg==",

"signature":
"eyJhbGci0iJSUzUxMiJ9.eyJtYWS5kYXR1IVMVyaWZ5RHRscyI6eyJOcmFuc2FjdGlvbklEIjoiUOFNUExFMDASOVVNUk4iLCJT

71 | Page

tYWS5kYXR1VmMEFsaWRhdG1lvbiI6I1lUvalFneGROZDRXc05Bd1VZWkdtdnR4Tzd1M3B3Z2UQ3V3N0ejdHR2RDTW1lpb2t6YXZ3aUpT
U3RsbWFNd1hFN1FGAOF5a3RWRmIt ZOFNMFFIQ0ZVAS83NnRpWjVCWGIwdAWFCeE1EM1BYY11Yemh4ZjI4YTFoUVBKenp0ZkJZb
2g3Y01Lb2FtTE12Wk9hcm9Gb1BIbUOxXSWROSWZCAk9iekxPY1INmMVOJI50m11ZnZxb3pkWFAYVTACbTBabG50dWp6W1lo2WHIkV1
RWRNJIHMTVYYUPERHC4NENmMaOVgZ2tsSTFrSnVDNjNoaFdBbnhSTjdrVEZnamRjZHRtY3pINOdnb0pOclIGM3ppclRMbOpgikp
o0TzIzTzRKNU81cGNzREV1ISO1VTXhOVVBGTTRNMWOWAUF6N3pZalJQVmNsREF3Q0tTSXFkbVUOMzNHSk14eWhgRzFoY21IUT09
IiwiYWFkaGFhclZhbGlkYXRpb24i01iINTm5gaERUdAGpRYWhmS1ZMRG5hZWNoOUxFR2Yrdj IrdE1HbX1Pcy9gSGN1OUFndHhGb
Gd5VFFFMHREDLDMXTGVBT2NtWHdoSmImYyt 10HYxcnloYXV3MEI4bDV1dnZhNHUZR1IVFAdkR4b011iSWQOWGS5gWiMwYy9sVIWRNY 2
RySTQ1IM210bjNKMHNFONBSaGtNTVA5SFY1IM1Q0eVIBV2NvajYrNGOHS3RavV3cyYnBTMV1gWnInTGpvWEF2ZGAECHZOK3JzU2R
JclVxV2c4ZUZ1dURrVIRKWmM8 5dk SuWUhONNBScUt3U2daVXEF6Y2pyWWVNWZ tLzVOa0kxNEAKd11CMGhgUVc2T1VuMHJIjaGow
VOwSTTFJIbXhnTkFIMUC2NGh5Zz1VdEk4S0c2ZVABaEVMbTNSRUt 1WkxxR2JTbTIwUUsOd0OJINSEJLbHPpTY1BYY31jQ0RKVUIMa
UE9PSIsImlhbmRhdGVSZXNwb25zZUR0bCI6eyJhY2NwdFJ1Zk5vIjoic30xWG04aEL1jUW9IZkt1cUdOVIFLOOd1ZXF5enNIMX
VLcCIO9vYOtPanNRNIJNwNTYS5dWIXWmRHbkIMS2 J2NWY1dnhkWnRYRKAERNJuQzNyM2c0L29ScDAzZQUAKVEIQQ3pNWDV6RVRUNGQ
0andUbCsvdWp5M3pHM2 1 kREpVZktsOTFMTjBLtTIBtam5UO0UShYm1XYTMvazRVWNp 0 ZXNXdjh2QVNmVmp5TzdHMFo1RUZsSVAG
amoxOFhwdjdvV2VhOUoweDIWRUs5VWISVMFNRGWOSkYwek54 SWxsbzQlTERIOS9JSURULIVCL21aL0VVbTZ5SEhzWHptS3Vib
T1lxeVdvNE5lalhua3A5eXk5Y00zZFZscO0Fwb2Q0MTBMVW1iWml3eUtnTmZVK1c5VIRQA0J1V3ZEel11N1pDaWIzZ2J4bmlacO
R1a3dLK3ZuNkZuaE56c1hOMVZBPTO0iLCIkYnRySWZzYyI6IjUwODUOOCIsImRiIdHIBY2NOVHIWZSI6IkRFQk1UIN0sImFhZGh
hYXJWZXJpZnlEdGwiOnsic3VjY2VzcONvZGUiO1JHaGANZ31FVktNSHIFbFZELO9GU2NNa31o0nAxQUIRCUxJUEPOOGPNSENT
a3NiRk9KRE8OVEZEcUhlYm43NOgwZWpQTUIzZOFNCQOpxQU81SkFhamIzYkpTaXV4MEM1IZHBSc1lVncFBFS1glTOVUSmxuRENIa
mINYUlKamJKbXpDZUVNVWXWVEYyN11DSWpHSOxWZ1lorMkpUckt TaFFXUXgwM3JITHI1ITOEYYVYrQV1JR3FEV2R3UUhYSnVVvME
Z1SnZaWnNjZXhNdXRhY05nQU5SMRGAKTHBTCc1R5cUZgVHIPCcTVydV1SaExhOFpyU2ZiMO01XKOR1eUhpdmVIYmoybFF3TXNDMS8
xdjdHcXJyelolUHIGUFUWSEZ4b04yUkFXVnVECEtVRUNGbVA1K2x1THAZdUwVRG1 sUSRVUWIMRXcvckYvSIRYMkQvQTBOSOoz
TktVODZyM1E9PSJ9£X0.hgBgdsH9qgzksjuzJIJpf IMBkV-~-
xUPEMNiBmtjk5P6glWGuck5TKWh6LnUVNn801oTfDFIWNQXzFaVRJov24DVaWdpxgL90RHYQHIWW2 5By ydKv5xBj 37cNOmJ PB
DxgFOVGdYA1717n0wJINQC-

8v14LZ22txPzfKhG9jXASToPYcdUSOwL2c4gYjkIxKn aDl11YfoFMWWnYwgU4U7QA1Dfr 9AHhhPQCDXK-
CSMXy2GJOUwDmbUtpVzYyi3-t3xttdWFfub6HLSt 5cacNbrCrcDCyHDNnIJ60G32NKngXV7MhYC-
5m2BQOQQbPLHCoHbggmMwN4 Dpb2bZTuF4J0ISVPBQ"

}

7.7.2 CheckSum Logic for OTP Validation

Generating Checksum with concatenating below fields

txnId + "|" + verifyStatus + "|" + errorCode + "|" + reasonCode + "|" + signature
value

Before check sum Hashing example

SAMPLEO0O099UMRN | ea7HBMRsu32GWkZv8sLTCDOJvEGXz7bc975yjuQfy2 jUmM8cO£NiSCN2x31uyS
tYTdfAC4kpEFDAIWOvOensqAlTYQE7r8MOJ+UGOM+eexz3/0BaUFQhHNBBbln+YsilrGKIkZVeafl
PC/5X7yTj0115WQe%%yPy2/np4Cgp+1MW7ggABQ3PN8xb18Y6s0eIFz+0rTgBpqZyKhCgHUGpiTcl
DNWb1la60IEn0g2EljrAnqwGomFHYV1KIiGWA2pa6uLVVEnVQts5c6M/b5vPQHIBOAnkWCPtNUI13f
0£fMPt/K1UTeuG6WEg3s/tPsTklbTahnex6hYZ381tqLpHBpcg==|bgduAlUdDuSJgHLC3E08jwxP2
BvFsCcEOPaiXooPn2yljwj/ANHT£fq0/aAlgNJ/+uhZW9/+nnBNCBna/NdoD5h4ctulSPXPUG/DrQY
y6jEmTYhHr+Lac2Sqg/ZIZv3b2JN1Yg8Epnk8DhkuWls4r9R0toQuktWCGb764 6Mt6chKDJHLAV/iw
IHisJ10IQmZ9UF2ao5HwlftBbr8dx8HsbGJFaOZrmRmNX83P1hWV68Unf3tDyHpkQKRFoXfKbjhP5
emZxW6DSdm1BfMsVi22blBCrpyxfHR/JMEaO2LTJISsJILtK)37XxXn5x9fm5yIJPX54Q+ETHO0QasPuo
yPJj45Gv6Q==| | eyThbGci0iJSUzUxMiJ9 . eyIJvdHBWZXJpZnlJIbmZvIjp7InRyYW5zYWNOaWOusSUQ
i0iJTQUI1QTEUWMDk5VU1ISTiIsIm9wdFZ1lcmlmeVNOYXR1cyI6ImVhNOhCTVIzdTMyR1drWnY4c0xU
QO0QWSNZmR1h6N2JjOTcleWplUWZ5MmpVbU04Y09mTm1TQ04yeDMxdX1TdF1UZGZBQzRrcEVGREFJV
zB2MGVuc3FBMVRZUUU3cjhNT0orVUcwTSt1ZXh6My9PQmFVR1FoSG5COmJIsbitZc21lsckdLSWtavm
VhZjFQQy81WDA5VGpPbEk1V1F10OWt5UHkyL25wNENNcCtsTVc3Z22dBQlEzUE44eGIx0OFk2czB1SUZ
6KzByVGdCcHFaeUtoQ2dIVUdwaVRjbEROV2IxYTZPSUVUMHEYRTFqckFucXdHb21GSF1WMUtJaUdX
QTIWYTZ1TFZWRWSWUXRzZNWM2TS9iNXZQUUhKQk 9kbmtXQ1B0T1VJIbDNMMGZNUHQvSzZFVVGV1RZZXR
Wczcy90UHNUazFiVGFobmV4NmMhZWjM4bHRxTHBIQNBjZz09IiwiZXJyb3JDb2R1IjoiY¥YmdkdUEXVW
REJVNKZOhMQzNFMDhqd3hQMkJ2RnNDYOUwUGFpWG9vUG4yeTFqd2ovQU5IVGZxMCIhQTFnTkovK3V

72 | Page

oWlc5LytubkJOQ0JuYS90ZGOENWgOY3R1IbFNQWFBVRYOEC1FZeTZgRW1UWWhIci tMYWMyU2cviWkla
djNiMkpOMV1nOEVwbms4RGhrdVcxczRyOVIwdGORAWtOVONHY jc2NDZNdDZjaEtESkhMNFYvaXdJs
GlzSmxPSVFtWj1lVRjJhbzVIdzFmdEJicjhkeDhIc2JHSkZhT1pybVJItT1g4M1AxaFdAWNjhVbmYzdE
R5SHBrUUtSRmO9YZk tiamhQNWVtWnhXNkRTZG0xQmZNc1ZpMjJiMUJDcnB5eGZIUi 9gqTUVhMDJIMVEP
TcOpMdE tgMzdYeFhuNXg5Zm01eUpQWDUOUS tFVEgwUWFzUHVveXBgNDVHdjZRPT0i1i£X0 . l1tmg6Eeo
yBJ9C05¢cK173-t7qgQLKk jHYqrOA6EaK82Y3tqqtlTuOw_hkB6K-
c78eVWzef6oohveQfMr4cPGwqTOLJAs7tnhmDjH22z1iCdLZI2SgmUf£Z5s2POe0KgJvwrIPOkvnEU
OeYexdatYhFGskoladuycRQJ19UjLtj3Bxa Rlh EmDD4Nbol XslcTJ NbKS1lwvFeVrqG3gFX6Zp
RHn2MxSsVA81TOadP3Zk-jK0il5n500Z20XVwvCSv2Qp4CPLr 6gphRWg8T JX-
7ZBirGb8ZrZ4Ntn8FSdkBvQrVbKGEfy7YVvg jmG34Xo030zhhToLZLQYo-5eHeXIydw

After checksum hashing SHA 256

654940560c978580c88c0f96f805fff653741be7ceeld4feba3cd92377d1533a0

Encrypting the checksum with NPCI public key

TP1lstsqIpWnRAr+TTE3+b1dQo5pUVUV/mQOMPEFR1j1cpFPGYEKFpXFAXEpmvs1FR5+9segYY4771w
nhDAAneepYmpQ/+yrABfy3fvnLc5LTAVrZenIFZa6gjIwOIhleiQm2mJ75rxizn+uWxEj8D9B16Gr
/3q0Y7I8bkNQXN5Aeh21dZ fKECxXZ611iBXRIELzZsXXd011Kxkyyx/3nFozZjpmoIlqd4N3Xk7xwIGG
Gvbg/z53T773MRw57NIU7vXGkmmW6gFtMX/nnZuxCEnsjeeOhzIvKuxMNwMs1t9XSh5GvcU6FtFci
Du8x4AmNL50+7EIfI3fSNEWXYVv7x1PsoxDQ==

Final Response with signature and checksum:

"otpVerifyInfo": {

"transactionID": "ONMG7032712190068010",

"optVerifyStatus":
"ea7HBMRsu32GWkZv8sLTCDOJVEGXz7bc975yjuQfy2jUmMBcOENLISCN2x31uyStYTAfACAkpEFDAIWOvVOensq
A1TYQE7r8MOJ+UGOM+eexz3/0BaUFQhHNBBb1n+YsilrGKIkZVeaflPC/5X7yTjO1I5WQedkyPy2/npdCgp+1M
W79ggABQ3PN8xb18Y6s0eIFz+0rTgBpgZyKhCgHUGPpiTclDNWbla6OIENnOg2El jrAnqwGomFHYVIKIiGWA2pa6bu
LVVENnVQts5c6M/b5vPQHIBOANkWCPENUI13f0fMPt/K1UTeuG6WEg3s/tPsTklbTahnex6hYZ381tgqLpHBpcg=

_n
’

"errorCode":
"bgduAlUdDuSJgHLC3E08jwxP2BvFsCcEOPaiXooPn2yljwj/ANHT£q0/aAlgNJ/+uhZW9/+nnBNCBna/NdoD5
h4ctulSPXPUG/DrQYy6jEmTYhHr+Lac2Sg/ZIZv3b2IN1Yg8Epnk8DhkuWls4r9R0toQuktWCGb7646Mt6chKD
JHL4V/iwIHisJ10IQmZOUF2a05Hw]l ftBbr8dx8HsbGIJFa0ZrmRmNX83P1hWV68Unf3tDyHpkQKRFoXfKbjhP5e
mZxW6DSdm1BfMsVi22b1BCrpyxfHR/JMEaO2LTISsJILtK]37XxXn5x9fm5yIPX54Q+ETHOQasPuoypj45Gv6Q=

by

"checkSumval":
"TPlstsqIpWnRAr+TTE3+b1dQo5pUVUV/mMOMPEFR1j1cpFPGYEKFpxFAXEpmvs1FR5+9segYY4771wnhDAAnee
pYmpQ/+yrABfy3fvnLcS5LTAVrZenIFZa6gjIwOIhleiQm2mJ75rxizn+uWxEj8DIBL6Gr/3q0Yj I8bkNQXNS5Ae
h21dZfKECxZ611BXRJIE1zZsXXd011Kxkyyx/3nFozZjpmoIlgd4N3Xk7xwIGGGvbg/z5)T773MRw57NIU7vXGkm
mW6gFtMX/nnZuxCEnsjeeOhz IvKuxMNwMs 1t 9XSh5GvcU6FtFciDu8x4mNL50+7EIfI3£SNEWXYv7x1PsoxDQ=

—_n
’

"signature":
"eyJhbGci01JSUzUxM1J9.eyJvdHBWZXIpZnlJdbmZvIjp7InRyYWSzYWNOaWOuSUQiOiJTQUIQTEUWMDk5VULS
TiIsIm9wdFZ1lcmlmeVNOYXR1cyI6ImVhNOhCTVJIzdTMyR1driWnY4c0xUQ0QwSNZmR1h6N2JjO0TcleWplUWZ5Mm
pVbU04Y09OmTm1TQ04yeDMxdX1TAF1UZGZBQzRrcEVGREFJVZB2MGVUc3FBMVRZUUU3cjhNTO0orVUcwTSt1ZXh6
My9POmMFVR1IFoSG5COmIsbitZc2lsckdLSWtavVmVhZjFQQy81WDA5VGpPbEk1VIF1IOWt 5UHkyL2 5SwNENncCtsTV
c3Z2dBQlEzUE44eGIx0Fk2czBlSUZ6KzByVGdCcHFaeUtoQ2dIVUdwaVRjbEROV2IXYTZPSUVUMHEYRTFgckFu

73 | Page

cXdHb21GSF1WMUtJaUdXQTIWYTZ1TFZWRWSWUXRzZNWM2TS91iNXZQUUhKQk9kbmtXQ1BOT1VIbDNMMGZNUHQvVS Z
FVVGV1RzZXRWczcy90UHNUazFiVGFobmV4NmMhZWijM4bHRXxTHBIQNBjZz09TiwiZXJyb3JDb2R1IjoiYmdkdUEx
VWREJVNKZ 0hMQzNFMDhgd3hQMkJ2RnNDYOUwUGFpWGIvUG4yeTFqd20vQUSIVGZxMCOhQTFnTkovK3VoWlc5Ly
tubkJOQO0JuYS90ZGOENWgOY3RIDFNQWFBVRYIECIFZeTZgRWIUWWhIcitMYWMyU2cvitkladjNiMkpOMV1nOEVW
bms4RGhrdVexczRyOVIwWAGORAWEOVONHY jc2NDZNADZjaEtESKhMNFYvaXdJSGlzSmxPSVEtW])1VRjJhbzVIdz
FmdEJicjhkeDhIc2JHSkZhT1lpybVJItT1lg4M1AxaFAWNIhVbmYzdERSSHBrUUtSRmOYZktiamhQNWVEWnhXNkRT
7G0xQmZNc1ZpMjJiMUJIDenB5eGZIUL 9qTUVhMDIMVEPTcOpMdEtgMzdYe FhuNXg52m01eUpQWDUOUStEFVEgWUW
FzUHVveXBgNDVHA] ZRPT01£X0.1tmg6EeoyBJ9C05cK173-t7qgQLKkJHYqrOA6EaK82Y3tgqt1TuOw hkB6K-
c78eViWzef60oohveQfMr4cPGwgTOLJAs7tnhmDjH22z11CdALZI2SgmUf£Z2552P0e0KgJvwrIPOkvnEUOeYexdatyY
hFGskolad4uycRQJ19UjLtj3Bxa Rlh EmDD4Nbol XslcTJ NbKS1lwvFeVrgG3gFX6ZpRHN2MxSsVA81TOadP3
Zk-3K0115n500Z20XVwvCSv2Qp4CPLr6gphRWg8T JX-

72BirGb8ZrZ4Ntn8FSdkBvQrVbKGEfy7YVvg jmG34Xo030zhhToLZLOYo-5eHeXIydw"

}

74 | Page

